These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28138505)

  • 1. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering.
    Dutel GD; Langlois P; Tingaud D; Vrel D; Dirras G
    Data Brief; 2017 Apr; 11():61-67. PubMed ID: 28138505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural Characterization and Prior Particle Boundary (PPB) of PM Nickel-Based Superalloys by Spark Plasma Sintering (SPS).
    Qin Z; Li Q; Wang G; Liu F
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Initial Powders on Properties of FeAlSi Intermetallics.
    Čech J; Haušild P; Karlík M; Bouček V; Nová K; Průša F; Novák P; Kopeček J
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Powder Milling on Properties of SPS Compacted FeAl.
    Michalcová A; Özkan M; Mikula P; Marek I; Knaislová A; Kopeček J; Vojtěch D
    Molecules; 2020 May; 25(9):. PubMed ID: 32403351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical properties of a nickel-base alloy prepared by isostatic pressing and sintering of the powdered metal.
    Fuys RA; Craig RG; Asger K
    J Oral Rehabil; 1976 Apr; 3(2):151-60. PubMed ID: 1066448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and Tribological Behavior of Mechanically Alloyed Ni-TiC Composites Processed via Spark Plasma Sintering.
    Walunj G; Bearden A; Patil A; Larimian T; Christudasjustus J; Gupta RK; Borkar T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application.
    Karre R; Kodli BK; Rajendran A; J N; Pattanayak DK; Ameyama K; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():619-627. PubMed ID: 30423747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component.
    Kushwaha AK; Maccione R; John M; Lanka S; Misra M; Menezes PL
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering--a comparative study.
    Vasylkiv O; Demirskyi D; Sakka Y; Ragulya A; Borodianska H
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4577-82. PubMed ID: 22905503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Mechanical Properties of Al
    Zhang D; Yu R; Feng X; Guo X; Yang Y; Xu X
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials.
    Tyrpekl V; Berkmann C; Holzhäuser M; Köpp F; Cologna M; Wangle T; Somers J
    Rev Sci Instrum; 2015 Feb; 86(2):023904. PubMed ID: 25725860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Pressure (HP) in Spark Plasma Sintering (SPS) Processes: Application to the Polycrystalline Diamond.
    Guignard J; Prakasam M; Largeteau A
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated by Spark Plasma Sintering.
    Sokol M; Ratzker B; Kalabukhov S; Dariel MP; Galun E; Frage N
    Adv Mater; 2018 Oct; 30(41):e1706283. PubMed ID: 29920779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powder Metallurgical Processing and Characterization of Molybdenum Addition to Tungsten Heavy Alloys by Spark Plasma Sintering.
    Annamalai AR; Muthuchamy A; Srikanth M; Natarajan S; Acharya S; Khisti A; Jen CP
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spark Plasma Sintering Behavior of Nb-Mo-Si Alloy Powders Fabricated by Hydrogenation-Dehydrogenation Method.
    Lee SY; Park KB; Kang JW; Kim Y; Kang HS; Ha TK; Min SH; Park HK
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spark plasma sintering of hydroxyapatite powders.
    Gu YW; Loh NH; Kho KA; Tor SB; Cheang P
    Biomaterials; 2002 Jan; 23(1):37-43. PubMed ID: 11762852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Porous Materials by Spark Plasma Sintering: A Review.
    Dudina DV; Bokhonov BB; Olevsky EA
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30759751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Bi-Te
    Park MS; Koo HY; Ha GH; Park YH
    J Nanosci Nanotechnol; 2020 Jan; 20(1):427-432. PubMed ID: 31383189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.