BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28138554)

  • 1. GLUT3 upregulation promotes metabolic reprogramming associated with antiangiogenic therapy resistance.
    Kuang R; Jahangiri A; Mascharak S; Nguyen A; Chandra A; Flanigan PM; Yagnik G; Wagner JR; De Lay M; Carrera D; Castro BA; Hayes J; Sidorov M; Garcia JLI; Eriksson P; Ronen S; Phillips J; Molinaro A; Koliwad S; Aghi MK
    JCI Insight; 2017 Jan; 2(2):e88815. PubMed ID: 28138554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance.
    Chandra A; Jahangiri A; Chen W; Nguyen AT; Yagnik G; Pereira MP; Jain S; Garcia JH; Shah SS; Wadhwa H; Joshi RS; Weiss J; Wolf KJ; Lin JG; Müller S; Rick JW; Diaz AA; Gilbert LA; Kumar S; Aghi MK
    Cancer Res; 2020 Apr; 80(7):1498-1511. PubMed ID: 32041837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance.
    Jahangiri A; De Lay M; Miller LM; Carbonell WS; Hu YL; Lu K; Tom MW; Paquette J; Tokuyasu TA; Tsao S; Marshall R; Perry A; Bjorgan KM; Chaumeil MM; Ronen SM; Bergers G; Aghi MK
    Clin Cancer Res; 2013 Apr; 19(7):1773-83. PubMed ID: 23307858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.
    Castro BA; Flanigan P; Jahangiri A; Hoffman D; Chen W; Kuang R; De Lay M; Yagnik G; Wagner JR; Mascharak S; Sidorov M; Shrivastav S; Kohanbash G; Okada H; Aghi MK
    Oncogene; 2017 Jun; 36(26):3749-3759. PubMed ID: 28218903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma.
    Hu YL; DeLay M; Jahangiri A; Molinaro AM; Rose SD; Carbonell WS; Aghi MK
    Cancer Res; 2012 Apr; 72(7):1773-83. PubMed ID: 22447568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy.
    DeLay M; Jahangiri A; Carbonell WS; Hu YL; Tsao S; Tom MW; Paquette J; Tokuyasu TA; Aghi MK
    Clin Cancer Res; 2012 May; 18(10):2930-42. PubMed ID: 22472177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas.
    Fack F; Espedal H; Keunen O; Golebiewska A; Obad N; Harter PN; Mittelbronn M; Bähr O; Weyerbrock A; Stuhr L; Miletic H; Sakariassen PØ; Stieber D; Rygh CB; Lund-Johansen M; Zheng L; Gottlieb E; Niclou SP; Bjerkvig R
    Acta Neuropathol; 2015 Jan; 129(1):115-31. PubMed ID: 25322816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition.
    Piao Y; Liang J; Holmes L; Henry V; Sulman E; de Groot JF
    Clin Cancer Res; 2013 Aug; 19(16):4392-403. PubMed ID: 23804423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma.
    Eriksson JA; Wanka C; Burger MC; Urban H; Hartel I; von Renesse J; Harter PN; Mittelbronn M; Steinbach JP; Rieger J
    J Neurochem; 2018 Feb; 144(4):421-430. PubMed ID: 29178334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasome inhibition with bortezomib induces cell death in GBM stem-like cells and temozolomide-resistant glioma cell lines, but stimulates GBM stem-like cells' VEGF production and angiogenesis.
    Bota DA; Alexandru D; Keir ST; Bigner D; Vredenburgh J; Friedman HS
    J Neurosurg; 2013 Dec; 119(6):1415-23. PubMed ID: 24093630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma.
    Carbonell WS; DeLay M; Jahangiri A; Park CC; Aghi MK
    Cancer Res; 2013 May; 73(10):3145-54. PubMed ID: 23644530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma.
    Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY
    Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor.
    Mésange P; Poindessous V; Sabbah M; Escargueil AE; de Gramont A; Larsen AK
    Oncotarget; 2014 Jul; 5(13):4709-21. PubMed ID: 25015210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for GLUT3 in glioblastoma cell invasion that is not recapitulated by GLUT1.
    Libby CJ; Gc S; Benavides GA; Fisher JL; Williford SE; Zhang S; Tran AN; Gordon ER; Jones AB; Tuy K; Flavahan W; Gordillo J; Long A; Cooper SJ; Lasseigne BN; Augelli-Szafran CE; Darley-Usmar V; Hjelmeland AB
    Cell Adh Migr; 2021 Dec; 15(1):101-115. PubMed ID: 33843470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined inhibition of IL1, CXCR1/2, and TGFβ signaling pathways modulates in-vivo resistance to anti-VEGF treatment.
    Carbone C; Tamburrino A; Piro G; Boschi F; Cataldo I; Zanotto M; Mina MM; Zanini S; Sbarbati A; Scarpa A; Tortora G; Melisi D
    Anticancer Drugs; 2016 Jan; 27(1):29-40. PubMed ID: 26473526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription.
    Ha TK; Her NG; Lee MG; Ryu BK; Lee JH; Han J; Jeong SI; Kang MJ; Kim NH; Kim HJ; Chi SG
    Cancer Res; 2012 Aug; 72(16):4097-109. PubMed ID: 22706202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.
    Yuen CA; Asuthkar S; Guda MR; Tsung AJ; Velpula KK
    CNS Oncol; 2016; 5(2):101-8. PubMed ID: 26997129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorectal cancer cells refractory to anti-VEGF treatment are vulnerable to glycolytic blockade due to persistent impairment of mitochondria.
    Xu J; Wang J; Xu B; Ge H; Zhou X; Fang JY
    Mol Cancer Ther; 2013 May; 12(5):717-24. PubMed ID: 23427299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma.
    Gyanchandani R; Ortega Alves MV; Myers JN; Kim S
    Mol Cancer Res; 2013 Dec; 11(12):1585-96. PubMed ID: 24092775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.
    Chaudhuri AD; Kabaria S; Choi DC; Mouradian MM; Junn E
    J Biol Chem; 2015 May; 290(19):12425-34. PubMed ID: 25814668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.