These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28138663)

  • 21. Silanization of Ag-deposited magnetite particles: an efficient route to fabricate magnetic nanoparticle-based Raman barcode materials.
    Kim K; Choi JY; Lee HB; Shin KS
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1872-8. PubMed ID: 20586448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.
    Liu K; Bai Y; Zhang L; Yang Z; Fan Q; Zheng H; Yin Y; Gao C
    Nano Lett; 2016 Jun; 16(6):3675-81. PubMed ID: 27192436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array.
    Deng S; Fan HM; Zhang X; Loh KP; Cheng CL; Sow CH; Foo YL
    Nanotechnology; 2009 Apr; 20(17):175705. PubMed ID: 19420600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties.
    Jiang L; Zou C; Zhang Z; Sun Y; Jiang Y; Leow W; Liedberg B; Li S; Chen X
    Small; 2014 Feb; 10(3):609-16. PubMed ID: 24039101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional gradient Ag nanoparticle assemblies: multiscale fabrication and SERS applications.
    He L; Chen X; Mu Y; Song F; Han M
    Nanotechnology; 2010 Dec; 21(49):495601. PubMed ID: 21071822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface-Enhanced Raman Spectroscopy (SERS) Study Using Oblique Angle Deposition of Ag Using Different Substrates.
    Lee J; Min K; Kim Y; Yu HK
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31091815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.
    Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y
    Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecularly linked 3D plasmonic nanoparticle core/satellite assemblies: SERS nanotags with single-particle Raman sensitivity.
    Schütz M; Schlücker S
    Phys Chem Chem Phys; 2015 Oct; 17(37):24356-60. PubMed ID: 26329892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A porous Au-Ag hybrid nanoparticle array with broadband absorption and high-density hotspots for stable SERS analysis.
    Li K; Liu G; Zhang S; Dai Y; Ghafoor S; Huang W; Zu Z; Lu Y
    Nanoscale; 2019 May; 11(19):9587-9592. PubMed ID: 31062804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs.
    Chen B; Meng G; Zhou F; Huang Q; Zhu C; Hu X; Kong M
    Nanotechnology; 2014 Apr; 25(14):145605. PubMed ID: 24633265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates.
    Wang Z; Meng G; Huang Z; Li Z; Zhou Q
    Nanoscale; 2014 Dec; 6(24):15280-5. PubMed ID: 25382607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates.
    Li Z; Meng G; Huang Q; Hu X; He X; Tang H; Wang Z; Li F
    Small; 2015 Oct; 11(40):5452-9. PubMed ID: 26313309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays.
    Tao Q; Li S; Ma C; Liu K; Zhang QY
    Dalton Trans; 2015 Feb; 44(7):3447-53. PubMed ID: 25604882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates.
    Liu J; Meng G; Li Z; Huang Z; Li X
    Nanoscale; 2015 Nov; 7(43):18218-24. PubMed ID: 26483141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates.
    Lee J; Seo J; Kim D; Shin S; Lee S; Mahata C; Lee HS; Min BW; Lee T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9053-60. PubMed ID: 24824186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.