These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28138677)

  • 1. Potential roles of chemical degradation in the biological activities of curcumin.
    Zhu J; Sanidad KZ; Sukamtoh E; Zhang G
    Food Funct; 2017 Mar; 8(3):907-914. PubMed ID: 28138677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feruloyloacetone can be the main curcumin transformation product.
    Typek R; Dawidowicz AL; Bernacik K; Stankevič M
    Food Chem; 2019 Jul; 286():136-140. PubMed ID: 30827586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of thermo sensitivity of curcumin and quantification of ferulic acid and vanillin as degradation products by a validated HPTLC method.
    Siddiqui NA
    Pak J Pharm Sci; 2015 Jan; 28(1 Suppl):299-305. PubMed ID: 25631508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol.
    Esatbeyoglu T; Ulbrich K; Rehberg C; Rohn S; Rimbach G
    Food Funct; 2015 Mar; 6(3):887-93. PubMed ID: 25619943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling curcumin degradation: autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione.
    Gordon ON; Luis PB; Sintim HO; Schneider C
    J Biol Chem; 2015 Feb; 290(8):4817-4828. PubMed ID: 25564617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Stable Degradation Products of Curcumin on Cancer Cell Proliferation and Inflammation.
    Sanidad KZ; Zhu J; Wang W; Du Z; Zhang G
    J Agric Food Chem; 2016 Dec; 64(48):9189-9195. PubMed ID: 27933995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox modulation of curcumin stability: Redox active antioxidants increase chemical stability of curcumin.
    Nimiya Y; Wang W; Du Z; Sukamtoh E; Zhu J; Decker E; Zhang G
    Mol Nutr Food Res; 2016 Mar; 60(3):487-94. PubMed ID: 26608515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative metabolites of curcumin poison human type II topoisomerases.
    Ketron AC; Gordon ON; Schneider C; Osheroff N
    Biochemistry; 2013 Jan; 52(1):221-7. PubMed ID: 23253398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vanillin Affects Amyloid Aggregation and Non-Enzymatic Glycation in Human Insulin.
    Iannuzzi C; Borriello M; Irace G; Cammarota M; Di Maro A; Sirangelo I
    Sci Rep; 2017 Nov; 7(1):15086. PubMed ID: 29118444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin.
    Agnihotri N; Mishra PC
    J Phys Chem A; 2011 Dec; 115(49):14221-32. PubMed ID: 22035040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of curcumin nanocrystal: physical aspects.
    Rachmawati H; Al Shaal L; Müller RH; Keck CM
    J Pharm Sci; 2013 Jan; 102(1):204-14. PubMed ID: 23047816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of enzymatically cross-linked feruloyl amylopectin for curcumin encapsulation.
    Zhu J; Heng Y; Zhang D; Wen Y; Li H; Zhao G
    Int J Biol Macromol; 2016 Apr; 85():126-32. PubMed ID: 26730483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of curcumin in buffer solutions and characterization of its degradation products.
    Wang YJ; Pan MH; Cheng AL; Lin LI; Ho YS; Hsieh CY; Lin JK
    J Pharm Biomed Anal; 1997 Aug; 15(12):1867-76. PubMed ID: 9278892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticataractogenesis Mechanisms of Curcumin and a Comparison of Its Degradation Products: An in Vitro Study.
    Liao JH; Huang YS; Lin YC; Huang FY; Wu SH; Wu TH
    J Agric Food Chem; 2016 Mar; 64(10):2080-6. PubMed ID: 26905955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of Curcumin: From Mechanism to Biological Implications.
    Schneider C; Gordon ON; Edwards RL; Luis PB
    J Agric Food Chem; 2015 Sep; 63(35):7606-14. PubMed ID: 25817068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis.
    Huang MT; Lysz T; Ferraro T; Abidi TF; Laskin JD; Conney AH
    Cancer Res; 1991 Feb; 51(3):813-9. PubMed ID: 1899046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-enzyme-system to degrade curcumin to natural vanillin.
    Esparan V; Krings U; Struch M; Berger RG
    Molecules; 2015 Apr; 20(4):6640-53. PubMed ID: 25875042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.
    Badavath VN; Baysal İ; Uçar G; Mondal SK; Sinha BN; Jayaprakash V
    Arch Pharm (Weinheim); 2016 Jan; 349(1):9-19. PubMed ID: 26592858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining whether curcumin degradation/condensation is actually bioactivation (Review).
    Jankun J; Wyganowska-Świątkowska M; Dettlaff K; Jelińska A; Surdacka A; Wątróbska-Świetlikowska D; Skrzypczak-Jankun E
    Int J Mol Med; 2016 May; 37(5):1151-8. PubMed ID: 26985652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies.
    Shen L; Liu CC; An CY; Ji HF
    Sci Rep; 2016 Feb; 6():20872. PubMed ID: 26887346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.