These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28138760)

  • 1. Oscillating systems with cointegrated phase processes.
    Østergaard J; Rahbek A; Ditlevsen S
    J Math Biol; 2017 Oct; 75(4):845-883. PubMed ID: 28138760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved synchronization likelihood method for quantifying neuronal synchrony.
    Khanmohammadi S
    Comput Biol Med; 2017 Dec; 91():80-95. PubMed ID: 29049910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective-phase description of coupled oscillators with general network structure.
    Kori H; Kawamura Y; Nakao H; Arai K; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036207. PubMed ID: 19905200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.
    Wang Z; Duan Z; Cao J
    Chaos; 2012 Mar; 22(1):013140. PubMed ID: 22463016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering phase-coupled oscillatory networks in electrophysiological data.
    van der Meij R; Jacobs J; Maris E
    Hum Brain Mapp; 2015 Jul; 36(7):2655-80. PubMed ID: 25864927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driven synchronization in random networks of oscillators.
    Hindes J; Myers CR
    Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of two interacting populations of oscillators.
    Montbrió E; Kurths J; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056125. PubMed ID: 15600710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple circular-circular correlation coefficients for the quantification of phase synchronization processes in the brain.
    Pauen K; Ivanova G
    Biomed Tech (Berl); 2013 Apr; 58(2):141-55. PubMed ID: 23435150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization properties of network motifs: influence of coupling delay and symmetry.
    D'Huys O; Vicente R; Erneux T; Danckaert J; Fischer I
    Chaos; 2008 Sep; 18(3):037116. PubMed ID: 19045490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying causal networks of neuronal sources from EEG/MEG data with the phase slope index: a simulation study.
    Ewald A; Avarvand FS; Nolte G
    Biomed Tech (Berl); 2013 Apr; 58(2):165-78. PubMed ID: 23435095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On partial contraction analysis for coupled nonlinear oscillators.
    Wang W; Slotine JJ
    Biol Cybern; 2005 Jan; 92(1):38-53. PubMed ID: 15650898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data.
    Onojima T; Goto T; Mizuhara H; Aoyagi T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005928. PubMed ID: 29337999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks.
    Moskalenko OI; Koronovskii AA; Hramov AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):064901. PubMed ID: 23848814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying EEG phase synchronization measures to non-linearly coupled neural mass models.
    Vindiola MM; Vettel JM; Gordon SM; Franaszczuk PJ; McDowell K
    J Neurosci Methods; 2014 Apr; 226():1-14. PubMed ID: 24485868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in networks with random interactions: theory and applications.
    Feng J; Jirsa VK; Ding M
    Chaos; 2006 Mar; 16(1):015109. PubMed ID: 16599775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons.
    Erichsen R; Mainieri MS; Brunnet LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061906. PubMed ID: 17280095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid synchronization through fast threshold modulation.
    Somers D; Kopell N
    Biol Cybern; 1993; 68(5):393-407. PubMed ID: 8476980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disorder induces explosive synchronization.
    Skardal PS; Arenas A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062811. PubMed ID: 25019837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilizing oscillation death by multicomponent coupling with mismatched delays.
    Zou W; Senthilkumar DV; Tang Y; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036210. PubMed ID: 23031000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.