These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 28139171)

  • 21. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.
    Dayal A; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2016 Sep; 155(3):518-25. PubMed ID: 27165673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study.
    Radulesco T; Meister L; Bouchet G; Varoquaux A; Giordano J; Mancini J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Jul; 44(4):603-611. PubMed ID: 31004557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation of Nasal Mucosal Temperature and Nasal Patency-A Computational Fluid Dynamics Study.
    Tjahjono R; Salati H; Inthavong K; Singh N
    Laryngoscope; 2023 Jun; 133(6):1328-1335. PubMed ID: 37158263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying patients who may benefit from inferior turbinate reduction using computer simulations.
    Hariri BM; Rhee JS; Garcia GJ
    Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regional Peak Mucosal Cooling Predicts Radiofrequency Treatment Outcomes of Nasal Valve Obstruction.
    Wu Z; Krebs JP; Spector BM; Otto BA; Zhao K; Farag AA
    Laryngoscope; 2021 Jun; 131(6):E1760-E1769. PubMed ID: 33140876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of the implications of computational fluid dynamic studies on nasal airflow and physiology.
    Leong SC; Chen XB; Lee HP; Wang DY
    Rhinology; 2010 Jun; 48(2):139-45. PubMed ID: 20502749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational analysis of nasal airflow and its alteration by a nasal dilator.
    Lee KB; Ventosa-Molina J; Fröhlich J
    Comput Biol Med; 2024 Aug; 178():108634. PubMed ID: 38917531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Objective measurements differ for perception of left and right nasal obstruction.
    Ng TY; Chen YF; Tsai MH; Huang KH; Tai CJ
    Auris Nasus Larynx; 2013 Feb; 40(1):81-4. PubMed ID: 22709573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A computational fluid dynamics study of inner flow through nasal cavity with unilateral hypertrophic inferior turbinate].
    Guo Y; Zhang Y; Chen G; Liu S; Lu X; Zhu M; Cai C; Chen X
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Sep; 23(17):773-7. PubMed ID: 20030039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensation of nasal patency compared to rhinomanometric results after septoplasty.
    Tompos T; Garai T; Zemplén B; Gerlinger I
    Eur Arch Otorhinolaryngol; 2010 Dec; 267(12):1887-91. PubMed ID: 20544355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Relationship between nasal airflow sensation and nasal patency].
    Li X; Du B; Guo X
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Apr; 32(2):109-11. PubMed ID: 10743141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics.
    Garcia GJ; Rhee JS; Senior BA; Kimbell JS
    Am J Rhinol Allergy; 2010; 24(1):e46-53. PubMed ID: 20109325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nasal cavity size, airway resistance, and subjective sensation after surgically assisted rapid maxillary expansion: a prospective longitudinal study.
    Magnusson A; Bjerklin K; Nilsson P; Jönsson F; Marcusson A
    Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):641-51. PubMed ID: 22051484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the intranasal flow field through computational fluid dynamics.
    Hildebrandt T; Goubergrits L; Heppt WJ; Bessler S; Zachow S
    Facial Plast Surg; 2013 Apr; 29(2):93-8. PubMed ID: 23564240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The research progress of nasal airflow dynamics].
    Wei J; Li L
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Apr; 31(8):647-649. PubMed ID: 29871337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of airflow patterns in nose models with differently localized septal perforations.
    Lindemann J; Rettinger G; Kröger R; Sommer F
    Laryngoscope; 2013 Sep; 123(9):2085-9. PubMed ID: 23821431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Nasal Valve Shape on Downstream Volume, Airflow, and Pressure Drop: Importance of the Nasal Valve Revisited.
    Naughton JP; Lee AY; Ramos E; Wootton D; Stupak HD
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):745-753. PubMed ID: 30191730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nasal airflow: resistance and sensation.
    Jones AS; Willatt DJ; Durham LM
    J Laryngol Otol; 1989 Oct; 103(10):909-11. PubMed ID: 2584850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.