These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 28139205)
1. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms. Ramadan A; Al-Omran M; Verma S Atherosclerosis; 2017 Feb; 257():288-296. PubMed ID: 28139205 [TBL] [Abstract][Full Text] [Related]
2. Altered IL-32 Signaling in Abdominal Aortic Aneurysm. Bengts S; Shamoun L; Kunath A; Appelgren D; Welander M; Björck M; Wanhainen A; Wågsäter D J Vasc Res; 2020; 57(4):236-244. PubMed ID: 32434199 [TBL] [Abstract][Full Text] [Related]
3. Proinflammatory role of stem cells in abdominal aortic aneurysms. Ryer EJ; Garvin RP; Schworer CM; Bernard-Eckroth KR; Tromp G; Franklin DP; Elmore JR; Kuivaniemi H J Vasc Surg; 2015 Nov; 62(5):1303-11.e4. PubMed ID: 24997808 [TBL] [Abstract][Full Text] [Related]
5. Insight in the (Phospho)proteome of Vascular Smooth Muscle Cells Derived From Patients With Abdominal Aortic Aneurysm Reveals Novel Disease Mechanisms. Rombouts KB; van Merrienboer TAR; Henneman AA; Knol JC; Pham TV; Piersma SR; Jimenez CR; Bogunovic N; van der Velden J; Yeung KK Arterioscler Thromb Vasc Biol; 2024 Oct; 44(10):2226-2243. PubMed ID: 39206541 [TBL] [Abstract][Full Text] [Related]
6. Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm. Shen G; Sun Q; Yao Y; Li S; Liu G; Yuan C; Li H; Xu Y; Wang H Atherosclerosis; 2020 Mar; 297():47-54. PubMed ID: 32078829 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of aortic smooth muscle cell secretions reveals an association of myosin heavy chain 11 with abdominal aortic aneurysm. Yokoyama U; Arakawa N; Ishiwata R; Yasuda S; Minami T; Goda M; Uchida K; Suzuki S; Matsumoto M; Koizumi N; Taguri M; Hirano H; Yoshimura K; Ogino H; Masuda M; Ishikawa Y Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H1012-H1018. PubMed ID: 30004237 [TBL] [Abstract][Full Text] [Related]
8. Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Wang Y; Jia L; Xie Y; Cai Z; Liu Z; Shen J; Lu Y; Wang Y; Su S; Ma Y; Xiang M Atherosclerosis; 2019 Oct; 289():64-72. PubMed ID: 31479773 [TBL] [Abstract][Full Text] [Related]
10. Membrane-Bound Thrombomodulin Regulates Macrophage Inflammation in Abdominal Aortic Aneurysm. Wang KC; Li YH; Shi GY; Tsai HW; Luo CY; Cheng MH; Ma CY; Hsu YY; Cheng TL; Chang BI; Lai CH; Wu HL Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2412-22. PubMed ID: 26338301 [TBL] [Abstract][Full Text] [Related]
11. Abdominal Aortic Aneurysm-Associated MicroRNA-516a-5p Regulates Expressions of Methylenetetrahydrofolate Reductase, Matrix Metalloproteinase-2, and Tissue Inhibitor of Matrix Metalloproteinase-1 in Human Abdominal Aortic Vascular Smooth Muscle Cells. Chan CYT; Cheuk BLY; Cheng SWK Ann Vasc Surg; 2017 Jul; 42():263-273. PubMed ID: 28288890 [TBL] [Abstract][Full Text] [Related]
12. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Wang Q; Liu Z; Ren J; Morgan S; Assa C; Liu B Circ Res; 2015 Feb; 116(4):600-11. PubMed ID: 25563840 [TBL] [Abstract][Full Text] [Related]
13. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. Tavares Monteiro JA; da Silva ES; Raghavan ML; Puech-Leão P; de Lourdes Higuchi M; Otoch JP J Vasc Surg; 2014 May; 59(5):1393-401.e1-2. PubMed ID: 23891493 [TBL] [Abstract][Full Text] [Related]
14. Osteopontin may be a driver of abdominal aortic aneurysm formation. Wang SK; Green LA; Gutwein AR; Gupta AK; Babbey CM; Motaganahalli RL; Fajardo A; Murphy MP J Vasc Surg; 2018 Dec; 68(6S):22S-29S. PubMed ID: 29402664 [TBL] [Abstract][Full Text] [Related]
15. The role of autophagy in abdominal aortic aneurysm: protective but dysfunctional. Wang L; Liu S; Pan B; Cai H; Zhou H; Yang P; Wang W Cell Cycle; 2020 Nov; 19(21):2749-2759. PubMed ID: 32960711 [TBL] [Abstract][Full Text] [Related]
16. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Orriols M; Varona S; Martí-Pàmies I; Galán M; Guadall A; Escudero JR; Martín-Ventura JL; Camacho M; Vila L; Martínez-González J; Rodríguez C Cardiovasc Res; 2016 Jun; 110(3):431-42. PubMed ID: 27089918 [TBL] [Abstract][Full Text] [Related]
17. Single-Cell RNA Sequencing Reveals Heterogeneity of Vascular Cells in Early Stage Murine Abdominal Aortic Aneurysm-Brief Report. Yang H; Zhou T; Stranz A; DeRoo E; Liu B Arterioscler Thromb Vasc Biol; 2021 Mar; 41(3):1158-1166. PubMed ID: 33472403 [TBL] [Abstract][Full Text] [Related]
18. Molecular targets and abdominal aortic aneurysms. Nanda S; Sharma SG; Longo S Recent Pat Cardiovasc Drug Discov; 2009 Jun; 4(2):150-9. PubMed ID: 19519557 [TBL] [Abstract][Full Text] [Related]
19. Tenascin-C is expressed in abdominal aortic aneurysm tissue with an active degradation process. Kimura T; Yoshimura K; Aoki H; Imanaka-Yoshida K; Yoshida T; Ikeda Y; Morikage N; Endo H; Hamano K; Imaizumi T; Hiroe M; Aonuma K; Matsuzaki M Pathol Int; 2011 Oct; 61(10):559-64. PubMed ID: 21951663 [TBL] [Abstract][Full Text] [Related]
20. Effects of long-term chloroquine administration on the natural history of aortic aneurysms in mice. Ramadan A; Wheatcroft MD; Quan A; Singh KK; Lovren F; Dhingra N; Teoh H; Al-Omran M; Leong-Poi H; Verma S Can J Physiol Pharmacol; 2015 Aug; 93(8):641-8. PubMed ID: 26099030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]