BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28139644)

  • 21. Anatomy and Flight Performance of the Early Enantiornithine Bird Protopteryx fengningensis: Information from New Specimens of the Early Cretaceous Huajiying Formation of China.
    Chiappe LM; Di L; Serrano FJ; Yuguang Z; Meng Q
    Anat Rec (Hoboken); 2020 Apr; 303(4):716-731. PubMed ID: 31825173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae.
    Atterholt J; Hutchison JH; O'Connor JK
    PeerJ; 2018; 6():e5910. PubMed ID: 30479894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.
    Liu D; Chiappe LM; Serrano F; Habib M; Zhang Y; Meng Q
    PLoS One; 2017; 12(10):e0184637. PubMed ID: 29020077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds.
    O'Connor JK; Zheng XT; Sullivan C; Chuong CM; Wang XL; Li A; Wang Y; Zhang XM; Zhou ZH
    J Evol Biol; 2015 Aug; 28(8):1550-67. PubMed ID: 26079847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin of flight: Could 'four-winged' dinosaurs fly?
    Padian K; Dial KP
    Nature; 2005 Nov; 438(7066):E3; discussion E3-4. PubMed ID: 16292258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution.
    Wang M; Stidham TA; Li Z; Xu X; Zhou Z
    Nat Commun; 2021 Jun; 12(1):3890. PubMed ID: 34162868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exceptional dinosaur fossils show ontogenetic development of early feathers.
    Xu X; Zheng X; You H
    Nature; 2010 Apr; 464(7293):1338-41. PubMed ID: 20428169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel evolution of a hyper-elongated tongue in a Cretaceous enantiornithine from China and the evolution of the hyolingual apparatus and feeding in birds.
    Li Z; Wang M; Stidham TA; Zhou Z; Clarke J
    J Anat; 2022 Apr; 240(4):627-638. PubMed ID: 34854094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle.
    Wang M; Stidham TA; Zhou Z
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10708-10713. PubMed ID: 30249638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new basal bird from China with implications for morphological diversity in early birds.
    Wang M; Wang X; Wang Y; Zhou Z
    Sci Rep; 2016 Jan; 6():19700. PubMed ID: 26806355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui.
    Clarke JA; Zhou Z; Zhang F
    J Anat; 2006 Mar; 208(3):287-308. PubMed ID: 16533313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The primary feather lengths of early birds with respect to avian wing shape evolution.
    Wang X; Nudds RL; Dyke GJ
    J Evol Biol; 2011 Jun; 24(6):1226-31. PubMed ID: 21418115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird.
    Wang M; Li Z; Zhou Z
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11470-11475. PubMed ID: 29073073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A long-tailed, seed-eating bird from the Early Cretaceous of China.
    Zhou Z; Zhang F
    Nature; 2002 Jul; 418(6896):405-9. PubMed ID: 12140555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The patterns and modes of the evolution of disparity in Mesozoic birds.
    Wang M; Lloyd GT; Zhang C; Zhou Z
    Proc Biol Sci; 2021 Feb; 288(1944):20203105. PubMed ID: 33529566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features.
    Xu X; Currie P; Pittman M; Xing L; Meng Q; Lü J; Hu D; Yu C
    Nat Commun; 2017 May; 8():14972. PubMed ID: 28463233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber.
    Xing L; McKellar RC; O'Connor JK; Niu K; Mai H
    Sci Rep; 2019 Oct; 9(1):15513. PubMed ID: 31664115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence.
    Zhou Z
    Naturwissenschaften; 2004 Oct; 91(10):455-71. PubMed ID: 15365634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers.
    Lefèvre U; Cau A; Cincotta A; Hu D; Chinsamy A; Escuillié F; Godefroit P
    Naturwissenschaften; 2017 Aug; 104(9-10):74. PubMed ID: 28831510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coevolution of caudal skeleton and tail feathers in birds.
    Felice RN
    J Morphol; 2014 Dec; 275(12):1431-40. PubMed ID: 25139752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.