These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28139711)

  • 21. Lattice Model to Derive the Fluctuating Hydrodynamics of Active Particles with Inertia.
    Manacorda A; Puglisi A
    Phys Rev Lett; 2017 Nov; 119(20):208003. PubMed ID: 29219378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Granular gases of rod-shaped grains in microgravity.
    Harth K; Kornek U; Trittel T; Strachauer U; Höme S; Will K; Stannarius R
    Phys Rev Lett; 2013 Apr; 110(14):144102. PubMed ID: 25166993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collective dynamics out of thermodynamic equilibrium.
    Robb G; Politi A
    Phys Rev E; 2017 Apr; 95(4-1):040201. PubMed ID: 28505867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The way from microscopic many-particle theory to macroscopic hydrodynamics.
    Haussmann R
    J Phys Condens Matter; 2016 Mar; 28(11):113001. PubMed ID: 26902659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrification in granular gases leads to constrained fractal growth.
    Singh C; Mazza MG
    Sci Rep; 2019 Jun; 9(1):9049. PubMed ID: 31227758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Granular shear flow dynamics and forces: experiment and continuum theory.
    Bocquet L; Losert W; Schalk D; Lubensky TC; Gollub JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011307. PubMed ID: 11800693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2007 Jul; 127(3):034705. PubMed ID: 17655453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomalous energy cascades in dense granular materials yielding under simple shear deformations.
    Saitoh K; Mizuno H
    Soft Matter; 2016 Feb; 12(5):1360-7. PubMed ID: 26701740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Capillarylike fluctuations of a solid-liquid interface in a noncohesive granular system.
    Luu LH; Castillo G; Mujica N; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040202. PubMed ID: 23679358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical approach to weakly dissipative granular collisions.
    Pinto IL; Rosas A; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012201. PubMed ID: 26274154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence and dynamics of unconfined self-organised vortices in active magnetic roller liquids.
    Han K; Glatz A; Snezhko A
    Soft Matter; 2021 Dec; 17(46):10536-10544. PubMed ID: 34761766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition.
    Dong H; Zhang W; Zhou L; Ma Y
    Sci Rep; 2015 Nov; 5():15848. PubMed ID: 26522094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension.
    Pierce CJ; Wijesinghe H; Mumper E; Lower BH; Lower SK; Sooryakumar R
    Phys Rev Lett; 2018 Nov; 121(18):188001. PubMed ID: 30444412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linear response and hydrodynamics for granular fluids.
    Dufty J; Baskaran A; Brey JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031310. PubMed ID: 18517373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid.
    Meruane C; Tamburrino A; Roche O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026311. PubMed ID: 23005858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometrically protected reversibility in hydrodynamic Loschmidt-echo experiments.
    Jeanneret R; Bartolo D
    Nat Commun; 2014 Mar; 5():3474. PubMed ID: 24667149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamic modes in a confined granular fluid.
    Brito R; Risso D; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022209. PubMed ID: 23496507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multiscale analysis of nutrient transport and biological tissue growth in vitro.
    O'Dea RD; Nelson MR; El Haj AJ; Waters SL; Byrne HM
    Math Med Biol; 2015 Sep; 32(3):345-66. PubMed ID: 25323738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability analysis of the homogeneous hydrodynamics of a model for a confined granular gas.
    Brey JJ; Buzón V; García de Soria MI; Maynar P
    Phys Rev E; 2016 Jun; 93(6):062907. PubMed ID: 27415347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
    Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S
    J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.