These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28139791)

  • 21. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO
    Chen YL; Chen YH; Chen JW; Cao F; Li L; Luo ZM; Leu IC; Pu YC
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8126-8137. PubMed ID: 30726054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ZnSe and CdS Co-Sensitized TiO
    Gunasekaran A; Sadhasivam S; Anbarasan N; Jeganathan K
    Chempluschem; 2022 Nov; 87(11):e202200304. PubMed ID: 36414394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemically grown vertically aligned 1D ZnO nanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route.
    Mali SS; Kim H; Patil PS; Hong CK
    Dalton Trans; 2013 Dec; 42(48):16961-7. PubMed ID: 24097343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced photoelectrochemical activity of α-Fe
    Chen Y; Jiang D; Li L; Li Z; Li Q; Shi R; Li J; Wang LN
    Nanotechnology; 2020 Apr; 31(17):174002. PubMed ID: 31842002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fe
    Ma J; Wang Q; Li L; Zong X; Sun H; Tao R; Fan X
    J Colloid Interface Sci; 2021 Nov; 602():32-42. PubMed ID: 34118603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of a CdO layer on CdS/ZnO nanorod arrays to enhance their photoelectrochemical performance.
    Van TK; Pham LQ; Kim DY; Zheng JY; Kim D; Pawar AU; Kang YS
    ChemSusChem; 2014 Dec; 7(12):3505-12. PubMed ID: 25324138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical Co-Pi Clusters/Fe
    Kim N; Ju S; Ha J; Choi H; Sung H; Lee H
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoanodes based on TiO
    Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R
    Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.
    Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X
    Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanostructure-assisted charge transfer in α-Fe
    Arzaee NA; Mohamad Noh MF; Mohd Ita NSH; Mohamed NA; Mohd Nasir SNF; Nawas Mumthas IN; Ismail AF; Mat Teridi MA
    Dalton Trans; 2020 Aug; 49(32):11317-11328. PubMed ID: 32760991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Greatly improved dispersibility of Pt quantum dots in hematite nanoarray and enhanced photoelectrochemical performance.
    Li X; Gu W; Wang F; Yin X; Zhu L; Zou W; Zhang G; Fu Z; Lu Y
    Nanotechnology; 2017 Oct; 28(41):415603. PubMed ID: 28767042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling the influence of 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin on the photogenerated charge behavior and photoelectrochemical water oxidation of hematite photoanode.
    Bu Q; Liu X; Zhao Q; Lu G; Zhu X; Liu Q; Xie T
    J Colloid Interface Sci; 2022 Nov; 626():345-354. PubMed ID: 35792465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl
    Xu YF; Rao HS; Chen BX; Lin Y; Chen HY; Kuang DB; Su CY
    Adv Sci (Weinh); 2015 Jul; 2(7):1500049. PubMed ID: 27980959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ternary Monolithic ZnS/CdS/rGO Photomembrane with Desirable Charge Separation/Transfer Routes for Effective Photocatalytic and Photoelectrochemical Hydrogen Generation.
    Zhang W; Huo S; Yang S; Zhong Y; Zhang S; Wang H; Zhong X; Fang Y
    Chem Asian J; 2019 Oct; 14(19):3431-3441. PubMed ID: 31529794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CdS/CdSe core-shell nanorod arrays: energy level alignment and enhanced photoelectrochemical performance.
    Wang M; Jiang J; Shi J; Guo L
    ACS Appl Mater Interfaces; 2013 May; 5(10):4021-5. PubMed ID: 23647055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.