These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28139821)

  • 41. Morphological features of encephalopathy after chronic administration of the antiepileptic drug valproate to rats. A transmission electron microscopic study of capillaries in the cerebellar cortex.
    Sobaniec-Lotowska ME; Sobaniec W
    Exp Toxicol Pathol; 1996 Jan; 48(1):65-75. PubMed ID: 8919272
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord.
    Li YQ; Chen P; Jain V; Reilly RM; Wong CS
    Radiat Res; 2004 Feb; 161(2):143-52. PubMed ID: 14731076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Repeated topical application of growth hormone attenuates blood-spinal cord barrier permeability and edema formation following spinal cord injury: an experimental study in the rat using Evans blue, ([125])I-sodium and lanthanum tracers.
    Nyberg F; Sharma HS
    Amino Acids; 2002; 23(1-3):231-9. PubMed ID: 12373543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autophagic degeneration of motor neurons in a model of slow glutamate excitotoxicity in vitro.
    Matyja E; Taraszewska A; Nagańska E; Rafałowska J
    Ultrastruct Pathol; 2005; 29(5):331-9. PubMed ID: 16257859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Astrocyte-conditioned medium attenuates glutamate-induced apoptotic cell death in primary cultured spinal cord neurons of rats.
    Lu X; Al-Aref R; Zhao D; Shen J; Yan Y; Gao Y
    Neurol Res; 2015 Sep; 37(9):803-8. PubMed ID: 26038835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hind-limb paraparesis in a rat model for neurolathyrism associated with apoptosis and an impaired vascular endothelial growth factor system in the spinal cord.
    Kusama-Eguchi K; Yamazaki Y; Ueda T; Suda A; Hirayama Y; Ikegami F; Watanabe K; May M; Lambein F; Kusama T
    J Comp Neurol; 2010 Mar; 518(6):928-42. PubMed ID: 20058324
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mode of spinal motor neurons degeneration in a model of slow glutamate excitotoxicity in vitro.
    Matyja E; Nagańska E; Taraszewska A; Rafałowska J
    Folia Neuropathol; 2005; 43(1):7-13. PubMed ID: 15827885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A possible haemodynamic mechanism for amyotrophic lateral sclerosis.
    Arhart RW
    Med Hypotheses; 2010 Oct; 75(4):341-6. PubMed ID: 20400230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glutamate enhances DNA fragmentation in cultured spinal motor neurons of rat.
    Manabe Y; Wang JM; Warita H; Shiro Y; Kashihara K; Abe K
    Neurol Res; 2001 Jan; 23(1):79-82. PubMed ID: 11210436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chronic elevation of extracellular glutamate due to transport blockade is innocuous for spinal motoneurons in vivo.
    Tovar-Y-Romo LB; Santa-Cruz LD; Zepeda A; Tapia R
    Neurochem Int; 2009; 54(3-4):186-91. PubMed ID: 19100799
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drug screening of neuroprotective agents on an organotypic-based model of spinal cord excitotoxic damage.
    Guzmán-Lenis MS; Navarro X; Casas C
    Restor Neurol Neurosci; 2009; 27(4):335-49. PubMed ID: 19738326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone morphogenetic protein-2 used in spinal fusion with spinal cord injury penetrates intrathecally and elicits a functional signaling cascade.
    Dmitriev AE; Farhang S; Lehman RA; Ling GS; Symes AJ
    Spine J; 2010 Jan; 10(1):16-25. PubMed ID: 19914878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regional Differences in the Absolute Abundance of Transporters, Receptors and Tight Junction Molecules at the Blood-Arachnoid Barrier and Blood-Spinal Cord Barrier among Cervical, Thoracic and Lumbar Spines in Dogs.
    Takeuchi H; Suzuki M; Goto R; Tezuka K; Fuchs H; Ishiguro N; Terasaki T; Braun C; Uchida Y
    Pharm Res; 2022 Jul; 39(7):1393-1413. PubMed ID: 35488144
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effects of glutamate transport inhibitor on organotypic cultured spinal cord slices].
    Xiao XJ; Wang XJ; Wang LQ; Song XQ; Liu WG; Zheng MA; Li CY
    Shi Yan Sheng Wu Xue Bao; 2005 Apr; 38(2):171-6. PubMed ID: 16011251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuronal damage in rat brain and spinal cord after cardiac arrest and massive hemorrhagic shock.
    Kudo Y; Ohtaki H; Dohi K; Yin L; Nakamachi T; Endo S; Yofu S; Hiraizumi Y; Miyaoka H; Shioda S
    Crit Care Med; 2006 Nov; 34(11):2820-6. PubMed ID: 16971856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage.
    Marsala M; Sorkin LS; Yaksh TL
    J Cereb Blood Flow Metab; 1994 Jul; 14(4):604-14. PubMed ID: 8014207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Matrix metalloproteinase-3 promotes early blood-spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury.
    Lee JY; Choi HY; Ahn HJ; Ju BG; Yune TY
    Am J Pathol; 2014 Nov; 184(11):2985-3000. PubMed ID: 25325922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutant huntingtin protein expression and blood-spinal cord barrier dysfunction in huntington disease.
    Sciacca G; Cicchetti F
    Ann Neurol; 2017 Dec; 82(6):981-994. PubMed ID: 29171910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage --> glutamate release --> damage --> glutamate release --> etc.
    McAdoo DJ; Hughes MG; Nie L; Shah B; Clifton C; Fullwood S; Hulsebosch CE
    Brain Res; 2005 Mar; 1038(1):92-9. PubMed ID: 15748877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The distinct abilities of tube-formation and migration between brain and spinal cord microvascular pericytes in rats.
    Wu Q; Jing Y; Yuan X; Li B; Wang B; Liu M; Li H; Xiu R
    Clin Hemorheol Microcirc; 2015 Jul; 60(2):231-40. PubMed ID: 24946754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.