BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28140352)

  • 1. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy.
    Qin N; Pinto M; Tian Z; Dedes G; Pompos A; Jiang SB; Parodi K; Jia X
    Phys Med Biol; 2017 May; 62(9):3682-3699. PubMed ID: 28140352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPU-based fast Monte Carlo dose calculation for proton therapy.
    Jia X; Schümann J; Paganetti H; Jiang SB
    Phys Med Biol; 2012 Dec; 57(23):7783-97. PubMed ID: 23128424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy.
    Li S; Cheng B; Wang Y; Pei X; Xu XG
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14208. PubMed ID: 37987549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.
    Qin N; Shen C; Tsai MY; Pinto M; Tian Z; Dedes G; Pompos A; Jiang SB; Parodi K; Jia X
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):235-243. PubMed ID: 29079118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy.
    Adam DP; Liu T; Caracappa PF; Bednarz BP; Xu XG
    Med Phys; 2020 Jun; 47(6):2537-2549. PubMed ID: 32175615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields.
    Brost EE; Wan Chan Tseung H; Antolak JA
    Med Phys; 2023 Jan; 50(1):600-618. PubMed ID: 35986907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy.
    Schiavi A; Senzacqua M; Pioli S; Mairani A; Magro G; Molinelli S; Ciocca M; Battistoni G; Patera V
    Phys Med Biol; 2017 Sep; 62(18):7482-7504. PubMed ID: 28873069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy.
    Ibáñez P; Villa-Abaunza A; Vidal M; Guerra P; Graullera S; Illana C; Udías JM
    Med Phys; 2021 Dec; 48(12):8089-8106. PubMed ID: 34658039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H; Ma J; Beltran C
    Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GPU-accelerated Monte Carlo dose computation engine for small animal radiotherapy.
    Liu Z; Zheng C; Zhao N; Huang Y; Chen J; Yang Y
    Med Phys; 2023 Aug; 50(8):5238-5247. PubMed ID: 37014307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport.
    Jia X; Gu X; Sempau J; Choi D; Majumdar A; Jiang SB
    Phys Med Biol; 2010 Jun; 55(11):3077-86. PubMed ID: 20463376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
    Tian Z; Li Y; Folkerts M; Shi F; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(20):7941-67. PubMed ID: 26418216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments and comprehensive evaluations of a GPU-based Monte Carlo package for proton therapy.
    Qin N; Botas P; Giantsoudi D; Schuemann J; Tian Z; Jiang SB; Paganetti H; Jia X
    Phys Med Biol; 2016 Oct; 61(20):7347-7362. PubMed ID: 27694712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension and validation of a GPU-Monte Carlo dose engine gDPM for 1.5 T MR-LINAC online independent dose verification.
    Li Y; Ding S; Wang B; Liu H; Huang X; Song T
    Med Phys; 2021 Oct; 48(10):6174-6183. PubMed ID: 34387872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.