These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 28140413)
1. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions. Ashraf C; Jain A; Xuan Y; van Duin AC Phys Chem Chem Phys; 2017 Feb; 19(7):5004-5017. PubMed ID: 28140413 [TBL] [Abstract][Full Text] [Related]
2. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Chenoweth K; van Duin AC; Goddard WA J Phys Chem A; 2008 Feb; 112(5):1040-53. PubMed ID: 18197648 [TBL] [Abstract][Full Text] [Related]
3. Development and application of a ReaxFF reactive force field for hydrogen combustion. Agrawalla S; van Duin AC J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320 [TBL] [Abstract][Full Text] [Related]
4. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion. Cheng T; Jaramillo-Botero A; Goddard WA; Sun H J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152 [TBL] [Abstract][Full Text] [Related]
5. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics. Ashraf C; van Duin AC J Phys Chem A; 2017 Feb; 121(5):1051-1068. PubMed ID: 28072539 [TBL] [Abstract][Full Text] [Related]
6. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials. Qian HJ; van Duin AC; Morokuma K; Irle S J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475 [TBL] [Abstract][Full Text] [Related]
7. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. Cheng XM; Wang QD; Li JQ; Wang JB; Li XY J Phys Chem A; 2012 Oct; 116(40):9811-8. PubMed ID: 22998396 [TBL] [Abstract][Full Text] [Related]
8. Experimental and Chemical Kinetics Study of the Effects of Halon 1211 (CF2BrCl) on the Laminar Flame Speed and Ignition of Light Hydrocarbons. Mathieu O; Keesee C; Gregoire C; Petersen EL J Phys Chem A; 2015 Jul; 119(28):7611-26. PubMed ID: 25815696 [TBL] [Abstract][Full Text] [Related]
9. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Chenoweth K; van Duin AC; Dasgupta S; Goddard WA J Phys Chem A; 2009 Mar; 113(9):1740-6. PubMed ID: 19209880 [TBL] [Abstract][Full Text] [Related]
10. Flame Propagation Characteristics of Syngas-Air in the Hele-Shaw Duct with Different Equivalence Ratios and Ignition Positions. Diao S; Wen X; Guo Z; He W; Deng H; Wang F ACS Omega; 2022 Jun; 7(23):20118-20128. PubMed ID: 35721959 [TBL] [Abstract][Full Text] [Related]
11. Does Density Ratio Significantly Affect Turbulent Flame Speed? Lipatnikov AN; Li WY; Jiang LJ; Shy SS Flow Turbul Combust; 2017; 98(4):1153-1172. PubMed ID: 30069153 [TBL] [Abstract][Full Text] [Related]
12. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. Weismiller MR; van Duin AC; Lee J; Yetter RA J Phys Chem A; 2010 May; 114(17):5485-92. PubMed ID: 20384351 [TBL] [Abstract][Full Text] [Related]
13. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method. Rahnamoun A; van Duin AC J Phys Chem A; 2014 Apr; 118(15):2780-7. PubMed ID: 24679339 [TBL] [Abstract][Full Text] [Related]
14. Ignition in an Atomistic Model of Hydrogen Oxidation. Alaghemandi M; Newcomb LB; Green JR J Phys Chem A; 2017 Mar; 121(8):1686-1692. PubMed ID: 28169533 [TBL] [Abstract][Full Text] [Related]
15. Ignition sensitivity and flame propagation of zirconium powder clouds. Cao Y; Su H; Ge L; Li Y; Wang Y; Xie L; Li B J Hazard Mater; 2019 Mar; 365():413-420. PubMed ID: 30448554 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive Comparison of the Combustion Behavior for Low-Temperature Combustion of Guo J; Peng W; Zhang S; Lei J; Jing J; Xiao R; Tang S ACS Omega; 2020 Mar; 5(10):4924-4936. PubMed ID: 32201778 [TBL] [Abstract][Full Text] [Related]
17. A reactive force field molecular dynamics study of molecular nitrogen and water mixtures under high temperature and high pressure. Yue L; Lv L; Xu Z; Zhang L; Yang M J Mol Model; 2019 Apr; 25(5):120. PubMed ID: 30997561 [TBL] [Abstract][Full Text] [Related]
18. Combustion Characteristics of Physically Mixed 40 nm Aluminum/Copper Oxide Nanothermites Using Laser Ignition. Saceleanu F; Idir M; Chaumeix N; Wen JZ Front Chem; 2018; 6():465. PubMed ID: 30356693 [TBL] [Abstract][Full Text] [Related]
19. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
20. The Structure Characteristics of Laminar Premixed Flames of Gasoline-like Fuel Under CI Engine-Relevant Conditions. Zhao Y; Yue Z; Zhang Y; Wang C; Cai Y; Chen Y; Zheng Z; Wang H; Yao M ACS Omega; 2024 Jun; 9(24):25976-25985. PubMed ID: 38911802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]