These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28140466)

  • 1. Comment on "Drawdown 'Triggers': A Misguided Strategy for Protecting Groundwater-Fed Streams and Springs," by Matthew J. Currell, 2016, v. 54, no. 5: 619-622.
    Harrington R; Rainville K; Blandford TN
    Ground Water; 2017 Mar; 55(2):152-153. PubMed ID: 28140466
    [No Abstract]   [Full Text] [Related]  

  • 2. Reply to Harrington et al.'s Comment on "Drawdown 'Triggers': A Misguided Strategy for Protecting Groundwater-Fed Streams and Springs," by Matthew J. Currell, 2016, v. 54, no. 5: 619-622.
    Currell MJ
    Ground Water; 2017 Mar; 55(2):154. PubMed ID: 28140451
    [No Abstract]   [Full Text] [Related]  

  • 3. Drawdown "Triggers": A Misguided Strategy for Protecting Groundwater-Fed Streams and Springs.
    Currell MJ
    Ground Water; 2016 Sep; 54(5):619-622. PubMed ID: 27099967
    [No Abstract]   [Full Text] [Related]  

  • 4. Water quality of springs and lakes in the Kumaon Lesser Himalayan Region of Uttarakhand, India.
    Chhimwal M; Kaur S; Srivastava RK; Hagare D; Shiva Prasad HJ
    J Water Health; 2022 Apr; 20(4):737-754. PubMed ID: 35482389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds.
    Tesoriero AJ; Duff JH; Wolock DM; Spahr NE; Almendinger JE
    J Environ Qual; 2009; 38(5):1892-900. PubMed ID: 19643755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution.
    Hosono T; Tokunaga T; Kagabu M; Nakata H; Orishikida T; Lin IT; Shimada J
    Water Res; 2013 May; 47(8):2661-75. PubMed ID: 23499194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbicide contamination and dispersion pattern in lowland springs.
    Laini A; Bartoli M; Lamastra L; Capri E; Balderacchi M; Trevisan M
    Sci Total Environ; 2012 Nov; 438():312-8. PubMed ID: 23018054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating Groundwater Interaction with a Surface Water Network Using Connected Linear Networks.
    Muffels C; Panday S; Andrews C; Tonkin M; Spiliotopoulos A
    Ground Water; 2022 Nov; 60(6):801-807. PubMed ID: 35452131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.
    Davids JC; Mehl SW
    Ground Water; 2015; 53(6):851-8. PubMed ID: 25406597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Groundwater-surface water interaction in inland New South Wales: a scoping study.
    Braaten R; Gates G
    Water Sci Technol; 2003; 48(7):215-24. PubMed ID: 14653652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.
    Monirul Islam M; Kanungoe P
    Water Sci Technol; 2005; 52(12):251-8. PubMed ID: 16477993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Search of Lost Springs: A Protocol for Locating Active and Inactive Springs.
    Fensham RJ; Silcock JL; Powell O; Habermehl MA
    Ground Water; 2016 May; 54(3):374-83. PubMed ID: 26436535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower Tarim River.
    Xu H; Ye M; Song Y; Chen Y
    Environ Monit Assess; 2007 Aug; 131(1-3):37-48. PubMed ID: 17225962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater flow cycling between a submarine spring and an inland fresh water spring.
    Davis JH; Verdi R
    Ground Water; 2014; 52(5):705-16. PubMed ID: 24138490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater drift as a tracer for identifying sources of spring discharge.
    Mori N; Kanduč T; Opalički Slabe M; Brancelj A
    Ground Water; 2015 Apr; 53 Suppl 1():123-32. PubMed ID: 25572284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Screened Vertical Circulation Wells for Groundwater Lowering in Unconfined Aquifers.
    Jin Y; Holzbecher E; Sauter M
    Ground Water; 2016 Jan; 54(1):15-22. PubMed ID: 25801278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Simulating piecewise-linear surface water and groundwater interactions with MODFLOW," by W.J. Zaadnoordijk, September-October 2009, v. 47, no. 5: 723-726.
    Rushton K
    Ground Water; 2010; 48(6):796-7; discussion 797-8. PubMed ID: 20678142
    [No Abstract]   [Full Text] [Related]  

  • 19. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river.
    Cardenas MB; Markowski MS
    Environ Sci Technol; 2011 Feb; 45(4):1407-11. PubMed ID: 21194211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate-induced warming imposes a threat to north European spring ecosystems.
    Jyväsjärvi J; Marttila H; Rossi PM; Ala-Aho P; Olofsson B; Nisell J; Backman B; Ilmonen J; Virtanen R; Paasivirta L; Britschgi R; Kløve B; Muotka T
    Glob Chang Biol; 2015 Dec; 21(12):4561-9. PubMed ID: 26300476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.