These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28140524)

  • 61. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels.
    Lim KS; Alves MH; Poole-Warren LA; Martens PJ
    Biomaterials; 2013 Sep; 34(29):7097-105. PubMed ID: 23800741
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.
    Zheng J; Zhao F; Zhang W; Mo Y; Zeng L; Li X; Chen X
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():119-127. PubMed ID: 29752080
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid.
    Mohamad N; Buang F; Mat Lazim A; Ahmad N; Martin C; Mohd Amin MCI
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2553-2564. PubMed ID: 27690276
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy.
    Lai JY; Lu PL; Chen KH; Tabata Y; Hsiue GH
    Biomacromolecules; 2006 Jun; 7(6):1836-44. PubMed ID: 16768405
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration.
    Taylor BL; Limaye A; Yarborough J; Freeman JW
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1131-1140. PubMed ID: 27017849
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sterilization of hydrogels for biomedical applications: A review.
    Galante R; Pinto TJA; Colaço R; Serro AP
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2472-2492. PubMed ID: 29247599
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties.
    Zou W; Chen Y; Zhang X; Li J; Sun L; Gui Z; Du B; Chen S
    Carbohydr Polym; 2018 Dec; 202():246-257. PubMed ID: 30286998
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering.
    Çetin D; Kahraman AS; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Second harmonic generation microscopy of collagen organization in tunable, environmentally responsive alginate hydrogels.
    Boddupalli A; Bratlie KM
    Biomater Sci; 2019 Feb; 7(3):1188-1199. PubMed ID: 30656296
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.
    Moghadam MN; Pioletti DP
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1161-9. PubMed ID: 26061346
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration.
    Nguyen TP; Lee BT
    J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality.
    Nguyen TU; Watkins KE; Kishore V
    J Biomed Mater Res A; 2019 Jul; 107(7):1541-1550. PubMed ID: 30882990
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fiber length and concentration: Synergistic effect on mechanical and cellular response in wet-laid poly(lactic acid) fibrous scaffolds.
    Wood AT; Everett D; Kumar S; Mishra MK; Thomas V
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):332-341. PubMed ID: 29656479
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth.
    Tavakol M; Dehshiri S; Vasheghani-Farahani E
    Carbohydr Polym; 2016 Nov; 152():504-509. PubMed ID: 27516298
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assessment of hydrogels for bioprinting of endothelial cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Inverse response of osteoblasts and fibroblasts to growth on carbon-deposited titanium surfaces.
    Yoshihara C; Ueno T; Chen P; Tsutsumi Y; Hanawa T; Wakabayashi N
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1869-1877. PubMed ID: 28926194
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material.
    Horii T; Tsujimoto H; Miyamoto H; Yamanaka K; Tanaka S; Torii H; Ozamoto Y; Takamori H; Nakamachi E; Ikada Y; Hagiwara A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):689-696. PubMed ID: 28306184
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The influences of a novel anti-adhesion device, thermally cross-linked gelatin film on peritoneal dissemination of tumor cells: The in vitro and in vivo experiments using murine carcinomatous peritonitis models.
    Miyamoto H; Tsujimoto H; Horii T; Ozamoto Y; Ueda J; Takagi T; Saitoh N; Hagiwara A
    J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2122-2130. PubMed ID: 29024447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.