These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28140566)

  • 1. Roles of Copper and a Conserved Aspartic Acid in the Autocatalytic Hydroxylation of a Specific Tryptophan Residue during Cysteine Tryptophylquinone Biogenesis.
    Williamson HR; Sehanobish E; Shiller AM; Sanchez-Amat A; Davidson VL
    Biochemistry; 2017 Feb; 56(7):997-1004. PubMed ID: 28140566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of recombinant biosynthetic precursors of the cysteine tryptophylquinone cofactors of l-lysine-epsilon-oxidase and glycine oxidase from Marinomonas mediterranea.
    Chacón-Verdú MD; Campillo-Brocal JC; Lucas-Elío P; Davidson VL; Sánchez-Amat A
    Biochim Biophys Acta; 2015 Sep; 1854(9):1123-31. PubMed ID: 25542375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of GoxA with Its Modifying Enzyme and Its Subunit Assembly Are Dependent on the Extent of Cysteine Tryptophylquinone Biosynthesis.
    Sehanobish E; Campillo-Brocal JC; Williamson HR; Sanchez-Amat A; Davidson VL
    Biochemistry; 2016 Apr; 55(16):2305-8. PubMed ID: 27064961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Conserved Residues of the Glycine Oxidase GoxA in Controlling Activity, Cooperativity, Subunit Composition, and Cysteine Tryptophylquinone Biosynthesis.
    Sehanobish E; Williamson HR; Davidson VL
    J Biol Chem; 2016 Oct; 291(44):23199-23207. PubMed ID: 27637328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases.
    Ma Z; Davidson VL
    Biochemistry; 2019 Apr; 58(17):2243-2249. PubMed ID: 30945853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of structures, catalytic mechanisms and processes of cofactor biosynthesis of tryptophylquinone-bearing enzymes.
    Yukl ET; Davidson VL
    Arch Biochem Biophys; 2018 Sep; 654():40-46. PubMed ID: 30026025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray crystallographic evidence for the presence of the cysteine tryptophylquinone cofactor in L-lysine ε-oxidase from Marinomonas mediterranea.
    Okazaki S; Nakano S; Matsui D; Akaji S; Inagaki K; Asano Y
    J Biochem; 2013 Sep; 154(3):233-6. PubMed ID: 23908359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and structural evidence that Asp-678 plays multiple roles in catalysis by the quinoprotein glycine oxidase.
    Mamounis KJ; Avalos D; Yukl ET; Davidson VL
    J Biol Chem; 2019 Nov; 294(46):17463-17470. PubMed ID: 31615898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state kinetic mechanism of LodA, a novel cysteine tryptophylquinone-dependent oxidase.
    Sehanobish E; Shin S; Sanchez-Amat A; Davidson VL
    FEBS Lett; 2014 Mar; 588(5):752-6. PubMed ID: 24462691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and structural characterization of a flavoprotein monooxygenase essential for biogenesis of tryptophylquinone cofactor.
    Oozeki T; Nakai T; Kozakai K; Okamoto K; Kuroda S; Kobayashi K; Tanizawa K; Okajima T
    Nat Commun; 2021 Feb; 12(1):933. PubMed ID: 33568660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Enzymatic Properties of an Unusual Cysteine Tryptophylquinone-Dependent Glycine Oxidase from Pseudoalteromonas luteoviolacea.
    Andreo-Vidal A; Mamounis KJ; Sehanobish E; Avalos D; Campillo-Brocal JC; Sanchez-Amat A; Yukl ET; Davidson VL
    Biochemistry; 2018 Feb; 57(7):1155-1165. PubMed ID: 29381339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution in microbial genomes of genes similar to lodA and goxA which encode a novel family of quinoproteins with amino acid oxidase activity.
    Campillo-Brocal JC; Chacón-Verdú MD; Lucas-Elío P; Sánchez-Amat A
    BMC Genomics; 2015 Mar; 16(1):231. PubMed ID: 25886995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LodB is required for the recombinant synthesis of the quinoprotein L-lysine-ε-oxidase from Marinomonas mediterranea.
    Chacón-Verdú MD; Gómez D; Solano F; Lucas-Elío P; Sánchez-Amat A
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2981-9. PubMed ID: 23955504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous production of L-lysine ε-oxidase by directed evolution using a fusion reporter method.
    Matsui D; Asano Y
    Biosci Biotechnol Biochem; 2015; 79(9):1473-80. PubMed ID: 25896319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions.
    Davidson VL
    Biochemistry; 2018 Jun; 57(22):3115-3125. PubMed ID: 29498828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of active site residues in LodA, a cysteine tryptophylquinone dependent ε-lysine oxidase.
    Sehanobish E; Chacón-Verdú MD; Sanchez-Amat A; Davidson VL
    Arch Biochem Biophys; 2015 Aug; 579():26-32. PubMed ID: 26048732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site maturation and activity of the copper-radical oxidase GlxA are governed by a tryptophan residue.
    Chaplin AK; Svistunenko DA; Hough MA; Wilson MT; Vijgenboom E; Worrall JA
    Biochem J; 2017 Feb; 474(5):809-825. PubMed ID: 28093470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological importance of quinoenzymes and the O-quinone family of cofactors.
    Stites TE; Mitchell AE; Rucker RB
    J Nutr; 2000 Apr; 130(4):719-27. PubMed ID: 10736320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site aspartate residues are critical for tryptophan tryptophylquinone biogenesis in methylamine dehydrogenase.
    Jones LH; Pearson AR; Tang Y; Wilmot CM; Davidson VL
    J Biol Chem; 2005 Apr; 280(17):17392-6. PubMed ID: 15734739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
    Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM
    J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.