These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 28140566)
21. The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site. Dow BA; Sukumar N; Matos JO; Choi M; Schulte A; Tatulian SA; Davidson VL Arch Biochem Biophys; 2014 May; 550-551():20-7. PubMed ID: 24704124 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms of biosynthesis of protein-derived redox cofactors. Schwartz B; Klinman JP Vitam Horm; 2001; 61():219-39. PubMed ID: 11153267 [TBL] [Abstract][Full Text] [Related]
23. Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Shin S; Feng M; Davidson VL Biochem J; 2013 Nov; 456(1):129-37. PubMed ID: 24024544 [TBL] [Abstract][Full Text] [Related]
26. The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins. Barik S Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233627 [TBL] [Abstract][Full Text] [Related]
27. Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis. Yukl ET; Liu F; Krzystek J; Shin S; Jensen LM; Davidson VL; Wilmot CM; Liu A Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4569-73. PubMed ID: 23487750 [TBL] [Abstract][Full Text] [Related]
28. His-Cys and Trp-Cys cross-links generated by post-translational chemical modification. Fujieda N Biosci Biotechnol Biochem; 2020 Mar; 84(3):445-454. PubMed ID: 31771431 [TBL] [Abstract][Full Text] [Related]
29. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity. Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485 [TBL] [Abstract][Full Text] [Related]
30. Characterization of PlGoxB, a flavoprotein required for cysteine tryptophylquinone biosynthesis in glycine oxidase from Pseudoalteromonas luteoviolacea. Mamounis KJ; Ma Z; Sanchez-Amat A; Davidson VL Arch Biochem Biophys; 2019 Oct; 674():108110. PubMed ID: 31541619 [TBL] [Abstract][Full Text] [Related]
31. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme. Ogura R; Wakamatsu T; Mutaguchi Y; Doi K; Ohshima T Enzyme Microb Technol; 2014 Jun; 60():40-6. PubMed ID: 24835098 [TBL] [Abstract][Full Text] [Related]
32. Roles of active-site residues in catalysis, substrate binding, cooperativity, and the reaction mechanism of the quinoprotein glycine oxidase. Mamounis KJ; Yukl ET; Davidson VL J Biol Chem; 2020 May; 295(19):6472-6481. PubMed ID: 32234764 [TBL] [Abstract][Full Text] [Related]
33. Model studies of 6,7-indolequinone cofactors of quinoprotein amine dehydrogenases. Murakami Y; Yoshimoto N; Fujieda N; Ohkubo K; Hasegawa T; Kano K; Fukuzumi S; Itoh S J Org Chem; 2007 Apr; 72(9):3369-80. PubMed ID: 17388633 [TBL] [Abstract][Full Text] [Related]
34. Factors which stabilize the methylamine dehydrogenase-amicyanin electron transfer protein complex revealed by site-directed mutagenesis. Davidson VL; Jones LH; Graichen ME; Mathews FS; Hosler JP Biochemistry; 1997 Oct; 36(42):12733-8. PubMed ID: 9335529 [TBL] [Abstract][Full Text] [Related]
35. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis. Shin S; Davidson VL Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526 [TBL] [Abstract][Full Text] [Related]
36. Structural comparison of crystal and solution states of the 138 kDa complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus. Cavalieri C; Biermann N; Vlasie MD; Einsle O; Merli A; Ferrari D; Rossi GL; Ubbink M Biochemistry; 2008 Jun; 47(25):6560-70. PubMed ID: 18512962 [TBL] [Abstract][Full Text] [Related]
37. Mechanistic investigation of peptidylglycine alpha-hydroxylating monooxygenase via intrinsic tryptophan fluorescence and mutagenesis. Bell J; El Meskini R; D'Amato D; Mains RE; Eipper BA Biochemistry; 2003 Jun; 42(23):7133-42. PubMed ID: 12795609 [TBL] [Abstract][Full Text] [Related]
38. Cofactor biosynthesis through protein post-translational modification. Yukl ET; Wilmot CM Curr Opin Chem Biol; 2012 Apr; 16(1-2):54-9. PubMed ID: 22387133 [TBL] [Abstract][Full Text] [Related]
39. Crystal structure of quinohemoprotein amine dehydrogenase from Pseudomonas putida. Identification of a novel quinone cofactor encaged by multiple thioether cross-bridges. Satoh A; Kim JK; Miyahara I; Devreese B; Vandenberghe I; Hacisalihoglu A; Okajima T; Kuroda S; Adachi O; Duine JA; Van Beeumen J; Tanizawa K; Hirotsu K J Biol Chem; 2002 Jan; 277(4):2830-4. PubMed ID: 11704672 [TBL] [Abstract][Full Text] [Related]
40. Newly discovered redox cofactors: possible nutritional, medical, and pharmacological relevance to higher animals. McIntire WS Annu Rev Nutr; 1998; 18():145-77. PubMed ID: 9706222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]