These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 28140750)
1. Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology. Vishvakarma R; Mishra A Prep Biochem Biotechnol; 2017 May; 47(5):450-457. PubMed ID: 28140750 [TBL] [Abstract][Full Text] [Related]
2. Plackett-Burman design and response surface optimization of conditions for culturing Saccharomyces cerevisiae in Agaricus bisporus industrial wastewater. Huang J; Zhang G; Zheng L; Lin Z; Wu Q; Pan Y Acta Sci Pol Technol Aliment; 2019; 18(1):65-74. PubMed ID: 30927753 [TBL] [Abstract][Full Text] [Related]
3. Characterization of a Novel Protease Inhibitor from the Edible Mushroom Vishvakarma R; Mishra A Protein Pept Lett; 2022; 29(5):460-472. PubMed ID: 35382712 [TBL] [Abstract][Full Text] [Related]
4. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Pontes MVA; Patyshakuliyeva A; Post H; Jurak E; Hildén K; Altelaar M; Heck A; Kabel MA; de Vries RP; Mäkelä MR Fungal Genet Biol; 2018 Mar; 112():12-20. PubMed ID: 29277563 [TBL] [Abstract][Full Text] [Related]
5. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. Stoknes K; Beyer DM; Norgaard E J Sci Food Agric; 2013 Jul; 93(9):2188-200. PubMed ID: 23371778 [TBL] [Abstract][Full Text] [Related]
6. Response surface optimization of conditions for culturing Azotobacter chroococcum in Agaricus bisporus industrial wastewater. Huang JF; Zhang DF; Leng B; Lin ZC; Pan YT J Gen Appl Microbiol; 2019 Sep; 65(4):163-172. PubMed ID: 30745499 [TBL] [Abstract][Full Text] [Related]
7. Changes in reactive oxygen species production and antioxidant enzyme activity of Agaricus bisporus harvested at different stages of maturity. Liu J; Wu YC; Kan J; Wang Y; Jin CH J Sci Food Agric; 2013 Jul; 93(9):2201-6. PubMed ID: 23339044 [TBL] [Abstract][Full Text] [Related]
8. Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. Rzymski P; Mleczek M; Niedzielski P; Siwulski M; Gąsecka M J Sci Food Agric; 2017 Feb; 97(3):923-928. PubMed ID: 27218432 [TBL] [Abstract][Full Text] [Related]
9. Optimization of Cultural Conditions for Huang J; Zhang D; Ou Y; Zhang G; Zheng L; Lin L; Ye X; Zhu X; Pan Y Biomed Res Int; 2018; 2018():8106245. PubMed ID: 30687758 [TBL] [Abstract][Full Text] [Related]
10. Chemical characterization of the biomass of an edible medicinal mushroom, Agaricus subrufescens, via solid-state 13C NMR. Peter-Valence F; Llarena-Hernandez C; Largeteau M; Savoie JM; Ruaudel F; Ziarelli F; Ferré E; Farnet AM J Agric Food Chem; 2011 Aug; 59(16):8939-43. PubMed ID: 21770364 [TBL] [Abstract][Full Text] [Related]
11. Diversity in the ability of Agaricus bisporus wild isolates to fruit at high temperature (25°C). Largeteau ML; Callac P; Navarro-Rodriguez AM; Savoie JM Fungal Biol; 2011 Nov; 115(11):1186-95. PubMed ID: 22036296 [TBL] [Abstract][Full Text] [Related]
12. Bacillus cereus liquid fertilizer was produced from Agaricus bisporus industrial wastewater. Huang J; Zhuo Y; Lu J; Lai Q; Zhang Y J Biotechnol; 2021 Feb; 327():74-85. PubMed ID: 33440221 [TBL] [Abstract][Full Text] [Related]
13. Protective effect of a protease inhibitor from Agaricus bisporus on Saccharomyces cerevisiae cells against oxidative stress. Vishvakarma R; Mishra A Prep Biochem Biotechnol; 2019; 49(3):244-254. PubMed ID: 30821200 [TBL] [Abstract][Full Text] [Related]
14. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Zhang HL; Wei JK; Wang QH; Yang R; Gao XJ; Sang YX; Cai PP; Zhang GQ; Chen QJ Sci Rep; 2019 Feb; 9(1):1151. PubMed ID: 30718596 [TBL] [Abstract][Full Text] [Related]
15. Production of polysaccharide from Agaricus subrufescens Peck on solid-state fermentation. Camelini CM; Gomes A; Cardozo FT; Simões CM; Rossi MJ; Giachini AJ; Petrus JC; de Mendonça MM Appl Microbiol Biotechnol; 2013 Jan; 97(1):123-33. PubMed ID: 22820522 [TBL] [Abstract][Full Text] [Related]
16. Mycelium and polysaccharide production of Agaricus blazei Murrill by submerged fermentation. Lin JH; Yang SS J Microbiol Immunol Infect; 2006 Apr; 39(2):98-108. PubMed ID: 16604241 [TBL] [Abstract][Full Text] [Related]
18. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Liu GQ; Wang XL Appl Microbiol Biotechnol; 2007 Feb; 74(1):78-83. PubMed ID: 17086412 [TBL] [Abstract][Full Text] [Related]
19. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters. Vishwanatha KS; Rao AG; Singh SA J Ind Microbiol Biotechnol; 2010 Feb; 37(2):129-38. PubMed ID: 19937364 [TBL] [Abstract][Full Text] [Related]
20. Phenolic compounds and antioxidant properties of wheat fermented with Agaricus brasiliensis and Agaricus bisporus. Zhai FH; Chen YF; Zhang Y; Zhao WJ; Han JR FEMS Microbiol Lett; 2021 Jan; 368(1):. PubMed ID: 33338214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]