BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28141494)

  • 1. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic.
    Hviid AM; Ruhdal-Jensen P; Kilstrup M
    Microbiology (Reading); 2017 Apr; 163(4):453-461. PubMed ID: 28141494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
    Wegmann U; O'Connell-Motherway M; Zomer A; Buist G; Shearman C; Canchaya C; Ventura M; Goesmann A; Gasson MJ; Kuipers OP; van Sinderen D; Kok J
    J Bacteriol; 2007 Apr; 189(8):3256-70. PubMed ID: 17307855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus.
    Benndorf D; Loffhagen N; Babel W
    Electrophoresis; 1999; 20(4-5):781-9. PubMed ID: 10344248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct inhibition of voltage-dependent Ca(2+) fluxes by ethanol and higher alcohols in rabbit T-tubule membranes.
    Oz M; Tchugunova YB; Dunn SM
    Eur J Pharmacol; 2001 Apr; 418(3):169-76. PubMed ID: 11343686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.
    To TM; Grandvalet C; Tourdot-Maréchal R
    Appl Environ Microbiol; 2011 May; 77(10):3327-34. PubMed ID: 21421775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope.
    Ingram LO; Vreeland NS
    J Bacteriol; 1980 Nov; 144(2):481-8. PubMed ID: 7000746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of normal alcohols on intestinal absorption of salicylic acid, sulfapyridine, and prednisolone in rats.
    Hayton WL
    J Pharm Sci; 1975 Sep; 64(9):1450-6. PubMed ID: 241834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion.
    Le Bourgeois P; Lautier M; van den Berghe L; Gasson MJ; Ritzenthaler P
    J Bacteriol; 1995 May; 177(10):2840-50. PubMed ID: 7751295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis.
    Hagi T; Kobayashi M; Kawamoto S; Shima J; Nomura M
    J Appl Microbiol; 2013 Jun; 114(6):1763-71. PubMed ID: 23473548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.
    Li J; Zhang W; Wang C; Yu Q; Dai R; Pei X
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1499-506. PubMed ID: 22395907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of choline transport in erythrocytes by n-alkanols.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):32-40. PubMed ID: 2265191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, sequencing and comparison of three lactococcal L-lactate dehydrogenase genes.
    Swindell SR; Griffin HG; Gasson MJ
    Microbiology (Reading); 1994 Jun; 140 ( Pt 6)():1301-5. PubMed ID: 8081494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-functional effects of a series of alcohols on acetylcholinesterase-associated membrane vesicles: elucidation of factors contributing to the alcohol action.
    Lasner M; Roth LG; Chen CH
    Arch Biochem Biophys; 1995 Mar; 317(2):391-6. PubMed ID: 7893154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.
    Amiri-Jami M; Lapointe G; Griffiths MW
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3071-80. PubMed ID: 24389665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization.
    Knoshaug EP; Ahlgren JA; Trempy JE
    Appl Environ Microbiol; 2007 Feb; 73(3):897-905. PubMed ID: 17122391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.
    Weidmann S; Maitre M; Laurent J; Coucheney F; Rieu A; Guzzo J
    Int J Food Microbiol; 2017 Apr; 247():18-23. PubMed ID: 27318622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic characterization and transformation of the non-dairy Lactococcus lactis strain KF147, for production of ethanol from xylose.
    Petersen KV; Liu J; Chen J; Martinussen J; Jensen PR; Solem C
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28418108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting.
    Rademaker JL; Herbet H; Starrenburg MJ; Naser SM; Gevers D; Kelly WJ; Hugenholtz J; Swings J; van Hylckama Vlieg JE
    Appl Environ Microbiol; 2007 Nov; 73(22):7128-37. PubMed ID: 17890345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis.
    Brøndsted L; Hammer K
    Appl Environ Microbiol; 1999 Feb; 65(2):752-8. PubMed ID: 9925612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.