These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28141525)

  • 1. EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.
    Vouga T; Zhuang KZ; Olivier J; Lebedev MA; Nicolelis MA; Bouri M; Bleuler H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):131-141. PubMed ID: 28141525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-machine interfaces for controlling lower-limb powered robotic systems.
    He Y; Eguren D; Azorín JM; Grossman RG; Luu TP; Contreras-Vidal JL
    J Neural Eng; 2018 Apr; 15(2):021004. PubMed ID: 29345632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lower limb exoskeleton control system based on steady state visual evoked potentials.
    Kwak NS; Müller KR; Lee SW
    J Neural Eng; 2015 Oct; 12(5):056009. PubMed ID: 26291321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
    Young AJ; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.
    Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Control of a Series-Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot.
    Wang T; Zheng T; Zhao S; Sui D; Zhao J; Zhu Y
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton.
    Wang J; Fei Y; Chen W
    Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.
    McMullen DP; Hotson G; Katyal KD; Wester BA; Fifer MS; McGee TG; Harris A; Johannes MS; Vogelstein RJ; Ravitz AD; Anderson WS; Thakor NV; Crone NE
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):784-96. PubMed ID: 24760914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usability and acceptance of using a lower-limb exoskeleton controlled by a BMI in incomplete spinal cord injury patients: a case study.
    Quiles V; Ferrero L; Ianez E; Ortiz M; Megia A; Comino N; Gil-Agudo AM; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4737-4740. PubMed ID: 33019049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A one-degree-of-freedom assistive exoskeleton with inertia compensation: the effects on the agility of leg swing motion.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    Proc Inst Mech Eng H; 2011 Mar; 225(3):228-45. PubMed ID: 21485325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.