These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28141576)

  • 1. Mathematical modelling of the electric sense of fish: the role of multi-frequency measurements and movement.
    Ammari H; Boulier T; Garnier J; Wang H
    Bioinspir Biomim; 2017 Jan; 12(2):025002. PubMed ID: 28141576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of amplitude information-frequency characteristics for underwater active electrolocation system.
    Peng J
    Bioinspir Biomim; 2015 Nov; 10(6):066007. PubMed ID: 26531142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolocation-based underwater obstacle avoidance using wide-field integration methods.
    Dimble KD; Faddy JM; Humbert JS
    Bioinspir Biomim; 2014 Mar; 9(1):016012. PubMed ID: 24451219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplitude information-frequency characteristics for multi-frequency excitation of underwater active electrolocation systems.
    Ren Q; Peng J; Chen H
    Bioinspir Biomim; 2019 Nov; 15(1):016004. PubMed ID: 31661679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of objects through active electrolocation in Gnathonemus petersii.
    von der Emde G; Schwarz S
    J Physiol Paris; 2002; 96(5-6):431-44. PubMed ID: 14692491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bioinspiring potential of weakly electric fish.
    Caputi AA
    Bioinspir Biomim; 2017 Feb; 12(2):025004. PubMed ID: 28151730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.
    Wolf-Homeyer S; Engelmann J; Schneider A
    Bioinspir Biomim; 2018 Oct; 13(6):066008. PubMed ID: 30226470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of electric imaging in weakly electric fish: insights for physiology, behavior and evolution.
    Gómez-Sena L; Pedraja F; Sanguinetti-Scheck JI; Budelli R
    J Physiol Paris; 2014; 108(2-3):112-28. PubMed ID: 25245199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
    von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):601-12. PubMed ID: 16645886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape recognition and classification in electro-sensing.
    Ammari H; Boulier T; Garnier J; Wang H
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11652-7. PubMed ID: 25071189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
    Pusch R; von der Emde G; Hollmann M; Bacelo J; Nöbel S; Grant K; Engelmann J
    J Exp Biol; 2008 Mar; 211(Pt 6):921-34. PubMed ID: 18310118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study.
    Shifman AR; Longtin A; Lewis JE
    Sci Rep; 2015 Oct; 5():15780. PubMed ID: 26514932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric fish measure distance in the dark.
    von der Emde G; Schwarz S; Gomez L; Budelli R; Grant K
    Nature; 1998 Oct; 395(6705):890-4. PubMed ID: 9804420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Collective Behaviour and Electrocommunication in the Weakly Electric Fish, Mormyrus rume, through a biomimetic Robotic Dummy Fish.
    Donati E; Worm M; Mintchev S; van der Wiel M; Benelli G; von der Emde G; Stefanini C
    Bioinspir Biomim; 2016 Dec; 11(6):066009. PubMed ID: 27906686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive underwater object inspection based on artificial electric sense.
    Lebastard V; Boyer F; Lanneau S
    Bioinspir Biomim; 2016 Jul; 11(4):045003. PubMed ID: 27458187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fish perform spatial pattern recognition and abstraction by exclusive use of active electrolocation.
    Graff C; Kaminski G; Gresty M; Ohlmann T
    Curr Biol; 2004 May; 14(9):818-23. PubMed ID: 15120076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.
    Metzen MG; Chacron MJ
    J Exp Biol; 2014 Apr; 217(Pt 8):1381-91. PubMed ID: 24363423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Object discrimination through active electrolocation: Shape recognition and the influence of electrical noise.
    Schumacher S; Burt de Perera T; von der Emde G
    J Physiol Paris; 2016 Oct; 110(3 Pt B):151-163. PubMed ID: 27979703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.
    Jun JJ; Longtin A; Maler L
    J Neurophysiol; 2012 Apr; 107(7):1996-2007. PubMed ID: 22190625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric imaging through active electrolocation: implication for the analysis of complex scenes.
    Engelmann J; Bacelo J; Metzen M; Pusch R; Bouton B; Migliaro A; Caputi A; Budelli R; Grant K; von der Emde G
    Biol Cybern; 2008 Jun; 98(6):519-39. PubMed ID: 18491164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.