These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28141583)

  • 1. Towards real-time photon Monte Carlo dose calculation in the cloud.
    Ziegenhein P; Kozin IN; Kamerling CP; Oelfke U
    Phys Med Biol; 2017 Jun; 62(11):4375-4389. PubMed ID: 28141583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
    Wang H; Ma Y; Pratx G; Xing L
    Phys Med Biol; 2011 Sep; 56(17):N175-81. PubMed ID: 21841211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary monitor unit calculations for VMAT using parallelized Monte Carlo simulations.
    Bhagroo S; French SB; Mathews JA; Nazareth DP
    J Appl Clin Med Phys; 2019 Jun; 20(6):60-69. PubMed ID: 31127699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
    Tian Z; Li Y; Folkerts M; Shi F; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(20):7941-67. PubMed ID: 26418216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast GPU-accelerated Monte Carlo engine for calculation of MLC-collimated electron fields.
    Brost EE; Wan Chan Tseung H; Antolak JA
    Med Phys; 2023 Jan; 50(1):600-618. PubMed ID: 35986907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.
    Tian Z; Zhang M; Hrycushko B; Albuquerque K; Jiang SB; Jia X
    Brachytherapy; 2016; 15(3):387-398. PubMed ID: 27216118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo verification of radiotherapy treatments with CloudMC.
    Miras H; Jiménez R; Perales Á; Terrón JA; Bertolet A; Ortiz A; Macías J
    Radiat Oncol; 2018 Jun; 13(1):99. PubMed ID: 29945681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications.
    Franciosini G; Battistoni G; Cerqua A; De Gregorio A; De Maria P; De Simoni M; Dong Y; Fischetti M; Marafini M; Mirabelli R; Muscato A; Patera V; Salvati F; Sarti A; Sciubba A; Toppi M; Traini G; Trigilio A; Schiavi A
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36356308
    [No Abstract]   [Full Text] [Related]  

  • 13. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy.
    Schiavi A; Senzacqua M; Pioli S; Mairani A; Magro G; Molinelli S; Ciocca M; Battistoni G; Patera V
    Phys Med Biol; 2017 Sep; 62(18):7482-7504. PubMed ID: 28873069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system.
    Mukumoto N; Tsujii K; Saito S; Yasunaga M; Takegawa H; Yamamoto T; Numasaki H; Teshima T
    Int J Radiat Oncol Biol Phys; 2009 Oct; 75(2):571-9. PubMed ID: 19735883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning.
    Alexander A; Deblois F; Stroian G; Al-Yahya K; Heath E; Seuntjens J
    Phys Med Biol; 2007 Jul; 52(13):N297-308. PubMed ID: 17664568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy.
    Ibáñez P; Villa-Abaunza A; Vidal M; Guerra P; Graullera S; Illana C; Udías JM
    Med Phys; 2021 Dec; 48(12):8089-8106. PubMed ID: 34658039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy.
    Adam DP; Liu T; Caracappa PF; Bednarz BP; Xu XG
    Med Phys; 2020 Jun; 47(6):2537-2549. PubMed ID: 32175615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloud-based serverless computing enables accelerated monte carlo simulations for nuclear medicine imaging.
    Bayerlein R; Swarnakar V; Selfridge A; Spencer BA; Nardo L; Badawi RD
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38876087
    [No Abstract]   [Full Text] [Related]  

  • 19. Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework.
    Neph R; Ouyang C; Neylon J; Yang Y; Sheng K
    Med Phys; 2019 Aug; 46(8):3719-3733. PubMed ID: 31183871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
    Na YH; Suh TS; Kapp DS; Xing L
    Phys Med Biol; 2013 Sep; 58(18):6525-40. PubMed ID: 24002571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.