These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 28142217)
1. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [TBL] [Abstract][Full Text] [Related]
2. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955 [TBL] [Abstract][Full Text] [Related]
3. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Hou R; Jiang C; Zheng Q; Wang C; Xu JR Mol Plant Pathol; 2015 Dec; 16(9):987-99. PubMed ID: 25781642 [TBL] [Abstract][Full Text] [Related]
4. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772 [TBL] [Abstract][Full Text] [Related]
5. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. Li C; Zhang Y; Wang H; Chen L; Zhang J; Sun M; Xu JR; Wang C Mol Plant Pathol; 2018 Apr; 19(4):909-921. PubMed ID: 28665481 [TBL] [Abstract][Full Text] [Related]
6. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum. Huang P; Yu X; Liu H; Ding M; Wang Z; Xu JR; Jiang C Nat Commun; 2024 Feb; 15(1):1216. PubMed ID: 38332031 [TBL] [Abstract][Full Text] [Related]
8. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum. Subramaniam R; Narayanan S; Walkowiak S; Wang L; Joshi M; Rocheleau H; Ouellet T; Harris LJ Mol Microbiol; 2015 Nov; 98(4):760-9. PubMed ID: 26248604 [TBL] [Abstract][Full Text] [Related]
9. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum. Yun Y; Guo P; Zhang J; You H; Guo P; Deng H; Hao Y; Zhang L; Wang X; Abubakar YS; Zhou J; Lu G; Wang Z; Zheng W Mol Plant Pathol; 2020 Oct; 21(10):1307-1321. PubMed ID: 32881238 [TBL] [Abstract][Full Text] [Related]
10. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides. Guo L; Breakspear A; Zhao G; Gao L; Kistler HC; Xu JR; Ma LJ Mol Plant Pathol; 2016 Feb; 17(2):196-209. PubMed ID: 25907134 [TBL] [Abstract][Full Text] [Related]
11. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Chong X; Wang C; Wang Y; Wang Y; Zhang L; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220839 [No Abstract] [Full Text] [Related]
12. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Gardiner DM; Kazan K; Manners JM Mol Plant Microbe Interact; 2009 Dec; 22(12):1588-600. PubMed ID: 19888824 [TBL] [Abstract][Full Text] [Related]
13. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
14. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Choi YE; Xu JR Mol Plant Microbe Interact; 2010 Apr; 23(4):522-33. PubMed ID: 20192838 [TBL] [Abstract][Full Text] [Related]
16. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Seong KY; Pasquali M; Zhou X; Song J; Hilburn K; McCormick S; Dong Y; Xu JR; Kistler HC Mol Microbiol; 2009 Apr; 72(2):354-67. PubMed ID: 19320833 [TBL] [Abstract][Full Text] [Related]
17. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Wang H; Chen D; Li C; Tian N; Zhang J; Xu JR; Wang C Fungal Genet Biol; 2019 Nov; 132():103251. PubMed ID: 31319136 [TBL] [Abstract][Full Text] [Related]
18. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. Li C; Liu C Environ Pollut; 2022 Aug; 307():119553. PubMed ID: 35640724 [TBL] [Abstract][Full Text] [Related]
19. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. Zhang L; Li B; Zhang Y; Jia X; Zhou M Mol Plant Pathol; 2016 Jan; 17(1):16-28. PubMed ID: 25808544 [TBL] [Abstract][Full Text] [Related]
20. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Mao X; Li L; Abubakar YS; Li Y; Luo Z; Chen M; Zheng W; Wang Z; Zheng H J Agric Food Chem; 2024 May; 72(17):9637-9646. PubMed ID: 38642053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]