These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28143654)

  • 1. Is the instrumented-pointer method of calibrating anatomical landmarks in 3D motion analysis reliable?
    Tawy GF; Rowe P
    J Biomech; 2017 Feb; 53():205-209. PubMed ID: 28143654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.
    Bisi MC; Stagni R; Caroselli A; Cappello A
    Med Eng Phys; 2015 Aug; 37(8):813-9. PubMed ID: 26077101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal landmarks for TKR implantations: evaluation of their accuracy using EOS imaging acquisition system.
    Schlatterer B; Suedhoff I; Bonnet X; Catonne Y; Maestro M; Skalli W
    Orthop Traumatol Surg Res; 2009 Feb; 95(1):2-11. PubMed ID: 19251231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The precision and repeatability of a custom-made pointer device for determination of virtual landmarks in canine three-dimensional kinematics.
    Malek S; Moens NM; Monteith GJ
    Vet Comp Orthop Traumatol; 2012; 25(2):102-8. PubMed ID: 22286120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of anatomical landmark misplacement to knee kinematics: performance of single and double calibration.
    Stagni R; Fantozzi S; Cappello A
    Gait Posture; 2006 Oct; 24(2):137-41. PubMed ID: 16934471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does medio-lateral motion occur in the normal knee? An in-vitro study in passive motion.
    Belvedere C; Leardini A; Giannini S; Ensini A; Bianchi L; Catani F
    J Biomech; 2011 Mar; 44(5):877-84. PubMed ID: 21176906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.
    Saner RJ; Washabaugh EP; Krishnan C
    Gait Posture; 2017 Jul; 56():19-23. PubMed ID: 28482201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference.
    Sauret C; Pillet H; Skalli W; Sangeux M
    Gait Posture; 2016 Oct; 50():180-184. PubMed ID: 27632062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms.
    Rettig O; Krautwurst B; Maier MW; Wolf SI
    BMC Musculoskelet Disord; 2015 Dec; 16():383. PubMed ID: 26646907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An instrumented spatial linkage for measuring knee joint kinematics.
    Rosvold JM; Atarod M; Frank CB; Shrive NG
    Knee; 2016 Jan; 23(1):43-8. PubMed ID: 26471425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.
    Bernardina GR; Cerveri P; Barros RM; Marins JC; Silvatti AP
    PLoS One; 2016; 11(8):e0160490. PubMed ID: 27513846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.
    Donati M; Camomilla V; Vannozzi G; Cappozzo A
    J Biomech; 2008 Jul; 41(10):2219-26. PubMed ID: 18550066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BoneMorphing versus freehand localization of anatomical landmarks: consequences for the reproducibility of implant positioning in total knee arthroplasty.
    Perrin N; Stindel E; Roux C
    Comput Aided Surg; 2005; 10(5-6):301-9. PubMed ID: 16410232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision of shoulder anatomical landmark calibration by two approaches: a CAST-like protocol and a new anatomical palpator method.
    Salvia P; Jan SV; Crouan A; Vanderkerken L; Moiseev F; Sholukha V; Mahieu C; Snoeck O; Rooze M
    Gait Posture; 2009 Jun; 29(4):587-91. PubMed ID: 19168358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the metrecom and its use in quantifying skeletal landmark locations.
    Smidt GL; McQuade KJ; Wei SH
    J Orthop Sports Phys Ther; 1992; 16(4):182-8. PubMed ID: 18796759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of the transepicondylar axis as an anatomical landmark in total knee arthroplasty.
    Stoeckl B; Nogler M; Krismer M; Beimel C; de la Barrera JL; Kessler O
    J Arthroplasty; 2006 Sep; 21(6):878-82. PubMed ID: 16950043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Soft Tissue Artifact Compensation Using Displacement Dependency between Anatomical Landmarks and Skin Markers.
    Ryu T
    Anat Res Int; 2012; 2012():123713. PubMed ID: 22919493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial reconstruction of marker trajectories from high-speed video image sequences.
    Baca A
    Med Eng Phys; 1997 Jun; 19(4):367-74. PubMed ID: 9302677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.