These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28143946)

  • 1. Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response.
    Ma J; Grant CE; Plagens RN; Barrett LN; Kim Guisbert KS; Guisbert E
    G3 (Bethesda); 2017 Mar; 7(3):1011-1018. PubMed ID: 28143946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a tissue-selective heat shock response regulatory network.
    Guisbert E; Czyz DM; Richter K; McMullen PD; Morimoto RI
    PLoS Genet; 2013 Apr; 9(4):e1003466. PubMed ID: 23637632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans.
    Brunquell J; Raynes R; Bowers P; Morris S; Snyder A; Lugano D; Deonarine A; Westerheide SD
    Aging Cell; 2018 Oct; 17(5):e12813. PubMed ID: 30003683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized Methods for Measuring Induction of the Heat Shock Response in Caenorhabditis elegans.
    Golden NL; Plagens RN; Kim Guisbert KS; Guisbert E
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32716378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock and caloric restriction have a synergistic effect on the heat shock response in a sir2.1-dependent manner in Caenorhabditis elegans.
    Raynes R; Leckey BD; Nguyen K; Westerheide SD
    J Biol Chem; 2012 Aug; 287(34):29045-53. PubMed ID: 22778258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic and Age-Dependent Proteostasis Decline Underlies Heterogeneity in Heat-Shock Response Dynamics.
    Vertti-Quintero N; Berger S; Casadevall I Solvas X; Statzer C; Annis J; Ruppen P; Stavrakis S; Ewald CY; Gunawan R; deMello AJ
    Small; 2021 Jul; 17(30):e2102145. PubMed ID: 34196492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan.
    Noormohammadi A; Khodakarami A; Gutierrez-Garcia R; Lee HJ; Koyuncu S; König T; Schindler C; Saez I; Fatima A; Dieterich C; Vilchez D
    Nat Commun; 2016 Nov; 7():13649. PubMed ID: 27892468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of organismal proteostasis by transcellular chaperone signaling.
    van Oosten-Hawle P; Porter RS; Morimoto RI
    Cell; 2013 Jun; 153(6):1366-78. PubMed ID: 23746847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.
    Kumsta C; Hansen M
    Autophagy; 2017 Jun; 13(6):1076-1077. PubMed ID: 28333578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans.
    Kumsta C; Chang JT; Schmalz J; Hansen M
    Nat Commun; 2017 Feb; 8():14337. PubMed ID: 28198373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorodeoxyuridine enhances the heat shock response and decreases polyglutamine aggregation in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Bowers P; Westerheide SD
    Mech Ageing Dev; 2014; 141-142():1-4. PubMed ID: 25168631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans.
    Maman M; Carvalhal Marques F; Volovik Y; Dubnikov T; Bejerano-Sagie M; Cohen E
    J Neurosci; 2013 Apr; 33(14):6102-11. PubMed ID: 23554491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the heat shock response as a therapeutic strategy for tau toxicity.
    Stanley TR; Otero EM; Knight AL; Saxton AD; Ding X; Borgen M; Kraemer BC; Kim Guisbert KS; Guisbert E
    Dis Model Mech; 2024 Sep; 17(9):. PubMed ID: 39352120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans.
    Crombie TA; Tang L; Choe KP; Julian D
    J Exp Biol; 2016 Jul; 219(Pt 14):2201-11. PubMed ID: 27207646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Thermal Stress Coping Network of the Nematode
    Kyriakou E; Taouktsi E; Syntichaki P
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses.
    van Oosten-Hawle P; Morimoto RI
    J Exp Biol; 2014 Jan; 217(Pt 1):129-36. PubMed ID: 24353212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging.
    Labbadia J; Brielmann RM; Neto MF; Lin YF; Haynes CM; Morimoto RI
    Cell Rep; 2017 Nov; 21(6):1481-1494. PubMed ID: 29117555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase.
    Tatum MC; Ooi FK; Chikka MR; Chauve L; Martinez-Velazquez LA; Steinbusch HWM; Morimoto RI; Prahlad V
    Curr Biol; 2015 Jan; 25(2):163-174. PubMed ID: 25557666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Mitochondrial Stress-Specific Form of HSF1 Protects against Age-Related Proteostasis Collapse.
    Williams R; Laskovs M; Williams RI; Mahadevan A; Labbadia J
    Dev Cell; 2020 Sep; 54(6):758-772.e5. PubMed ID: 32735771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.