BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 28143999)

  • 1. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions.
    Yue X; Nguyen TD; Zellmer V; Zhang S; Zorlutuna P
    Biomaterials; 2018 Jul; 170():37-48. PubMed ID: 29653286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation.
    Singh M; Close DA; Mukundan S; Johnston PA; Sant S
    Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation.
    Dhamecha D; Le D; Chakravarty T; Perera K; Dutta A; Menon JU
    Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112100. PubMed ID: 33965110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment.
    Xu W; Qian J; Zhang Y; Suo A; Cui N; Wang J; Yao Y; Wang H
    Acta Biomater; 2016 Mar; 33():131-41. PubMed ID: 26805429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor Spheroid Fabrication and Encapsulation in Polyethylene Glycol Hydrogels for Studying Spheroid-Matrix Interactions.
    Bruns J; Nejat S; Faber A; Zustiak SP
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.
    Janani G; Pillai MM; Selvakumar R; Bhattacharyya A; Sabarinath C
    Biofabrication; 2017 Feb; 9(1):015016. PubMed ID: 28000609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-loss-free concave microwell array based size-controlled multi-cellular tumoroid generation for anti-cancer drug screening.
    Lee SW; Jeong SY; Shin TH; Min J; Lee D; Jeong GS
    PLoS One; 2019; 14(7):e0219834. PubMed ID: 31344058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval.
    Kim G; Jung Y; Cho K; Lee HJ; Koh WG
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delta-24-RGD Induces Cytotoxicity of Glioblastoma Spheroids in Three Dimensional PEG Microwells.
    Avci NG; Fan Y; Dragomir A; Akay YM; Gomez-Manzano C; Fueyo-Margareto J; Akay M
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):946-51. PubMed ID: 26661633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?
    Hoarau-Véchot J; Rafii A; Touboul C; Pasquier J
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29346265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness.
    Shah L; Latif A; Williams KJ; Tirella A
    Acta Biomater; 2022 Oct; 152():273-289. PubMed ID: 36087866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.