These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28144140)
1. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats. Chai HJ; Kiew LV; Chin Y; Norazit A; Mohd Noor S; Lo YL; Looi CY; Lau YS; Lim TM; Wong WF; Abdullah NA; Abdul Sattar MZ; Johns EJ; Chik Z; Chung LY Int J Nanomedicine; 2017; 12():577-591. PubMed ID: 28144140 [TBL] [Abstract][Full Text] [Related]
2. Serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibits the rat embryo implantation in vivo and interferes with cell adhesion in vitro. Jiang YH; Shi Y; He YP; Du J; Li RS; Shi HJ; Sun ZG; Wang J Contraception; 2011 Dec; 84(6):642-8. PubMed ID: 22078196 [TBL] [Abstract][Full Text] [Related]
3. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Zuo J; Khan A; Glenton PA; Khan SR Nephrol Dial Transplant; 2011 Jun; 26(6):1785-96. PubMed ID: 21378157 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. Diatchuk V; Lotan O; Koshkin V; Wikstroem P; Pick E J Biol Chem; 1997 May; 272(20):13292-301. PubMed ID: 9148950 [TBL] [Abstract][Full Text] [Related]
5. A pan-NADPH Oxidase Inhibitor Ameliorates Kidney Injury in Type 1 Diabetic Rats. Dorotea D; Kwon G; Lee JH; Saunders E; Bae YS; Moon SH; Lee SJ; Cha DR; Ha H Pharmacology; 2018; 102(3-4):180-189. PubMed ID: 30099457 [TBL] [Abstract][Full Text] [Related]
6. The roles of NADPH-oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney. Edlund J; Fasching A; Liss P; Hansell P; Palm F Diabetes Metab Res Rev; 2010 Jul; 26(5):349-56. PubMed ID: 20583310 [TBL] [Abstract][Full Text] [Related]
7. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. Persson P; Hansell P; Palm F Am J Physiol Regul Integr Comp Physiol; 2012 Jun; 302(12):R1443-9. PubMed ID: 22552796 [TBL] [Abstract][Full Text] [Related]
8. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. Gorin Y; Block K; Hernandez J; Bhandari B; Wagner B; Barnes JL; Abboud HE J Biol Chem; 2005 Nov; 280(47):39616-26. PubMed ID: 16135519 [TBL] [Abstract][Full Text] [Related]
9. Radical scavenging effect of gliclazide in diabetic rats fed with a high cholesterol diet. Onozato ML; Tojo A; Goto A; Fujita T Kidney Int; 2004 Mar; 65(3):951-60. PubMed ID: 14871415 [TBL] [Abstract][Full Text] [Related]
10. Effects of N-acetylcysteine on nicotinamide dinucleotide phosphate oxidase activation and antioxidant status in heart, lung, liver and kidney in streptozotocin-induced diabetic rats. Lei S; Liu Y; Liu H; Yu H; Wang H; Xia Z Yonsei Med J; 2012 Mar; 53(2):294-303. PubMed ID: 22318816 [TBL] [Abstract][Full Text] [Related]
11. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats. Serizawa K; Yogo K; Aizawa K; Tashiro Y; Ishizuka N Cardiovasc Diabetol; 2011 Nov; 10():105. PubMed ID: 22107602 [TBL] [Abstract][Full Text] [Related]
12. Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. Wijayanti N; Kietzmann T; Immenschuh S J Biol Chem; 2005 Jun; 280(23):21820-9. PubMed ID: 15833736 [TBL] [Abstract][Full Text] [Related]
13. Biodistribution of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in mice with ovarian OCa-1 tumor. Li C; Newman RA; Wu QP; Ke S; Chen W; Hutto T; Kan Z; Brannan MD; Charnsangavej C; Wallace S Cancer Chemother Pharmacol; 2000; 46(5):416-22. PubMed ID: 11127947 [TBL] [Abstract][Full Text] [Related]
14. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Watanabe H; Miyamoto Y; Honda D; Tanaka H; Wu Q; Endo M; Noguchi T; Kadowaki D; Ishima Y; Kotani S; Nakajima M; Kataoka K; Kim-Mitsuyama S; Tanaka M; Fukagawa M; Otagiri M; Maruyama T Kidney Int; 2013 Apr; 83(4):582-92. PubMed ID: 23325087 [TBL] [Abstract][Full Text] [Related]
15. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid. Mao ZM; Shen SM; Wan YG; Sun W; Chen HL; Huang MM; Yang JJ; Wu W; Tang HT; Tang RM J Ethnopharmacol; 2015 Sep; 173():256-65. PubMed ID: 26226437 [TBL] [Abstract][Full Text] [Related]
16. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy. Yu H; Tang Z; Zhang D; Song W; Zhang Y; Yang Y; Ahmad Z; Chen X J Control Release; 2015 May; 205():89-97. PubMed ID: 25529533 [TBL] [Abstract][Full Text] [Related]
17. Selective inhibition of NADPH oxidase reverses the over contraction of diabetic rat aorta. Rehman AU; Dugic E; Benham C; Lione L; Mackenzie LS Redox Biol; 2014; 2():61-4. PubMed ID: 25460721 [TBL] [Abstract][Full Text] [Related]
18. Effects of apocynin and losartan treatment on renal oxidative stress in a rat model of calcium oxalate nephrolithiasis. Li CY; Deng YL; Sun BH Int Urol Nephrol; 2009 Dec; 41(4):823-33. PubMed ID: 19241135 [TBL] [Abstract][Full Text] [Related]
19. Near-Infrared Activatable Phthalocyanine-Poly-L-Glutamic Acid Conjugate: Enhanced in Vivo Safety and Antitumor Efficacy toward an Effective Photodynamic Cancer Therapy. Cheah HY; Gallon E; Dumoulin F; Hoe SZ; Japundžić-Žigon N; Glumac S; Lee HB; Anand P; Chung LY; Vicent MJ; Kiew LV Mol Pharm; 2018 Jul; 15(7):2594-2605. PubMed ID: 29763568 [TBL] [Abstract][Full Text] [Related]