These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2814427)

  • 1. [Scientific training of competition swimmers: contribution of lactic acid level].
    La Harpe R; Rostan A; Di Prampero P; Cerretelli P
    Schweiz Z Sportmed; 1989 Oct; 37(3):148-52. PubMed ID: 2814427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises.
    Olbrecht J; Madsen O; Mader A; Liesen H; Hollmann W
    Int J Sports Med; 1985 Apr; 6(2):74-7. PubMed ID: 4008143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reduced training on muscular strength and endurance in competitive swimmers.
    Neufer PD; Costill DL; Fielding RA; Flynn MG; Kirwan JP
    Med Sci Sports Exerc; 1987 Oct; 19(5):486-90. PubMed ID: 3683154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination and validity of critical swimming velocity in elite physically disabled swimmers.
    Garatachea N; Abadía O; García-Isla FJ; Sarasa FJ; Bresciani G; González-Gallego J; De Paz JA
    Disabil Rehabil; 2006 Dec; 28(24):1551-6. PubMed ID: 17178618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood lactate response and critical speed in swimmers aged 10-12 years of different standards.
    Denadai BS; Greco CC; Teixeira M
    J Sports Sci; 2000 Oct; 18(10):779-84. PubMed ID: 11055813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical velocity and lactate threshold in young swimmers.
    Toubekis AG; Tsami AP; Tokmakidis SP
    Int J Sports Med; 2006 Feb; 27(2):117-23. PubMed ID: 16475057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the anaerobic threshold and maximal lactate steady state speed in equines using the lactate minimum speed protocol.
    Gondim FJ; Zoppi CC; Pereira-da-Silva L; de Macedo DV
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):375-80. PubMed ID: 17234441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive determination of the anaerobic threshold in swimming.
    Cellini M; Vitiello P; Nagliati A; Ziglio PG; Martinelli S; Ballarin E; Conconi F
    Int J Sports Med; 1986 Dec; 7(6):347-51. PubMed ID: 3804544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heart rate and blood lactate concentration during on-ice training in speed skating.
    Smith DJ; Roberts D
    Can J Sport Sci; 1990 Mar; 15(1):23-7. PubMed ID: 2331633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of adaptive processes in child and adolescent swimmers. Acid-base parameters of swimmers and weight-lifters.
    Fendler K; Lissák K; Romhányi M; Kovács GL; Szücs R; Mátrai A
    Acta Physiol Acad Sci Hung; 1977; 49(1):27-36. PubMed ID: 39423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances.
    Dekerle J; Sidney M; Hespel JM; Pelayo P
    Int J Sports Med; 2002 Feb; 23(2):93-8. PubMed ID: 11842355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of physical training and mental practice of in-clothes swimming: assessment by physiological parameters.
    Fujimoto H; Inokuchi S; Ishida H
    Tokai J Exp Clin Med; 2001 Dec; 26(4-6):139-45. PubMed ID: 12030444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off seasonal and pre-seasonal assessment of circulating energy sources during prolonged running at the anaerobic threshold in competitive triathletes.
    Knoepfli B; Riddell MC; Ganzoni E; Burki A; Villiger B; von Duvillard SP
    Br J Sports Med; 2004 Aug; 38(4):402-7. PubMed ID: 15273171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical swimming speed does not represent the speed at maximal lactate steady state.
    Dekerle J; Pelayo P; Clipet B; Depretz S; Lefevre T; Sidney M
    Int J Sports Med; 2005 Sep; 26(7):524-30. PubMed ID: 16195984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood lactate accumulation in top level swimmers following competition.
    Bonifazi M; Martelli G; Marugo L; Sardella F; Carli G
    J Sports Med Phys Fitness; 1993 Mar; 33(1):13-8. PubMed ID: 8350602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of blood lactate clearance following maximal swimming. Effect of velocity of recovery swimming.
    McMaster WC; Stoddard T; Duncan W
    Am J Sports Med; 1989; 17(4):472-7. PubMed ID: 2782530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet suit effect: a comparison between competitive swimmers and triathletes.
    Chatard JC; Senegas X; Selles M; Dreanot P; Geyssant A
    Med Sci Sports Exerc; 1995 Apr; 27(4):580-6. PubMed ID: 7791590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for determining critical speed as swimming fatigue threshold in competitive swimming.
    Wakayoshi K; Yoshida T; Udo M; Kasai T; Moritani T; Mutoh Y; Miyashita M
    Int J Sports Med; 1992 Jul; 13(5):367-71. PubMed ID: 1521952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pool length on blood lactate, heart rate, and velocity in swimming.
    Keskinen OP; Keskinen KL; Mero AA
    Int J Sports Med; 2007 May; 28(5):407-13. PubMed ID: 17111309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of taper on swim power, stroke distance, and performance.
    Johns RA; Houmard JA; Kobe RW; Hortobágyi T; Bruno NJ; Wells JM; Shinebarger MH
    Med Sci Sports Exerc; 1992 Oct; 24(10):1141-6. PubMed ID: 1435162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.