These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28144551)

  • 41. Boiling heat transfer and droplet spreading of nanofluids.
    Murshed SM; de Castro CA
    Recent Pat Nanotechnol; 2013 Nov; 7(3):216-23. PubMed ID: 24330044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering.
    Gao JW; Zheng RT; Ohtani H; Zhu DS; Chen G
    Nano Lett; 2009 Dec; 9(12):4128-32. PubMed ID: 19995084
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of thermal distribution and fluid flow in the domain with multi-solid structures using Cubic-Interpolated Pseudo-Particle model.
    Nguyen Q; Babanezhad M; Taghvaie Nakhjiri A; Rezakazemi M; Shirazian S
    PLoS One; 2020; 15(6):e0233850. PubMed ID: 32555730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modelling Thermal Conduction in Nanoparticle Aggregates in the Presence of Surfactants.
    Karagiannakis NP; Skouras ED; Burganos VN
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33227926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Review on Heat Transfer of Nanofluids by Applied Electric Field or Magnetic Field.
    Wang G; Zhang Z; Wang R; Zhu Z
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles.
    Warrier P; Teja A
    Nanoscale Res Lett; 2011 Mar; 6(1):247. PubMed ID: 21711761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.
    Zhao N; Li Z
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation on Synthesis, Stability, and Thermal Conductivity Properties of Water-Based SnO₂/Reduced Graphene Oxide Nanofluids.
    Yu X; Wu Q; Zhang H; Zeng G; Li W; Qian Y; Li Y; Yang G; Chen M
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29280972
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental Study on Characteristics of Grinded Graphene Nanofluids with Surfactants.
    Seong H; Kim G; Jeon J; Jeong H; Noh J; Kim Y; Kim H; Huh S
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29867066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental.
    Ali FM; Yunus WM; Moksin MM; Talib ZA
    Rev Sci Instrum; 2010 Jul; 81(7):074901. PubMed ID: 20687751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanofluid Heat Transfer: Enhancement of the Heat Transfer Coefficient inside Microchannels.
    Apmann K; Fulmer R; Scherer B; Good S; Wohld J; Vafaei S
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214944
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting the effective thermal conductivity of carbon nanotube based nanofluids.
    Venkata Sastry NN; Bhunia A; Sundararajan T; Das SK
    Nanotechnology; 2008 Feb; 19(5):055704. PubMed ID: 21817618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for enhanced thermal conduction through percolating structures in nanofluids.
    Philip J; Shima PD; Raj B
    Nanotechnology; 2008 Jul; 19(30):305706. PubMed ID: 21828773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.
    Kwon YH; Kim D; Li CG; Lee JK; Hong DS; Lee JG; Lee SH; Cho YH; Kim SH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5769-74. PubMed ID: 22121605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.
    Lenin R; Joy PA
    J Colloid Interface Sci; 2017 Nov; 506():162-168. PubMed ID: 28735189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ionic liquid-based stable nanofluids containing gold nanoparticles.
    Wang B; Wang X; Lou W; Hao J
    J Colloid Interface Sci; 2011 Oct; 362(1):5-14. PubMed ID: 21723564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation on the Thermal Conductivity of Mineral Oil-Based Alumina/Aluminum Nitride Nanofluids.
    Xiang D; Shen L; Wang H
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31888147
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Concentration and size dependence of nano-silver dispersed water based nanofluids.
    Paul G; Sarkar S; Pal T; Das PK; Manna I
    J Colloid Interface Sci; 2012 Apr; 371(1):20-7. PubMed ID: 22284450
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile.
    Cabaleiro D; Colla L; Barison S; Lugo L; Fedele L; Bobbo S
    Nanoscale Res Lett; 2017 Dec; 12(1):53. PubMed ID: 28102524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flat plate solar collector performance using alumina nanofluids: Experimental characterization and efficiency tests.
    Mondragón R; Sánchez D; Cabello R; Llopis R; Juliá JE
    PLoS One; 2019; 14(2):e0212260. PubMed ID: 30794583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.