BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28144785)

  • 1. Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris.
    Xi J; Toyoda I; Shiga S
    Cell Tissue Res; 2017 Jun; 368(3):469-485. PubMed ID: 28144785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping PERIOD-immunoreactive cells with neurons relevant to photoperiodic response in the bean bug Riptortus pedestris.
    Koide R; Xi J; Hamanaka Y; Shiga S
    Cell Tissue Res; 2021 Sep; 385(3):571-583. PubMed ID: 33954831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males.
    Ikeno T; Numata H; Goto SG
    J Insect Physiol; 2011 Jul; 57(7):935-8. PubMed ID: 21550348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris.
    Shimokawa K; Numata H; Shiga S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Aug; 194(8):751-62. PubMed ID: 18546002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris.
    Ikeno T; Numata H; Goto SG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):394-7. PubMed ID: 21669185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oviposition-promoting pars intercerebralis neurons show
    Hasebe M; Shiga S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33622784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.
    Rozsypal J; Moos M; Goto SG
    Bull Entomol Res; 2018 Aug; 108(4):487-493. PubMed ID: 29037264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreception in entrainment of rhythms and photoperiodic regulation of diapause in a hemipteran, Graphosoma lineatum.
    Nakamura K; Hodkova M
    J Biol Rhythms; 1998 Apr; 13(2):159-66. PubMed ID: 9554577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clock gene-dependent glutamate dynamics in the bean bug brain regulate photoperiodic reproduction.
    Hasebe M; Shiga S
    PLoS Biol; 2022 Sep; 20(9):e3001734. PubMed ID: 36067166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Females of Riptortus pedestris (Hemiptera: Alydidae) in Reproductive Diapause are More Responsive to Synthetic Aggregation Pheromone.
    Rahman MM; Lim UT
    J Econ Entomol; 2016 Oct; 109(5):2082-2089. PubMed ID: 27417638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock outputs regulating insect photoperiodism: A potential role for glutamate transporter.
    Des Marteaux L; Xi J; Mano G; Goto SG
    Biochem Biophys Res Commun; 2022 Jan; 589():100-106. PubMed ID: 34902745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii.
    Shintani Y; Shiga S; Numata H
    J Exp Biol; 2009 Nov; 212(Pt 22):3651-5. PubMed ID: 19880726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroanatomical approaches to the study of insect photoperiodism.
    Shiga S; Numata H
    Photochem Photobiol; 2007; 83(1):76-86. PubMed ID: 16922604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanism of circadian clock-based photoperiodism in insects and snails.
    Hamanaka Y; Hasebe M; Shiga S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):601-625. PubMed ID: 37596422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pigment-dispersing factor is involved in photoperiodic control of reproduction in the brown-winged green bug, Plautia stali.
    Hasebe M; Kotaki T; Shiga S
    J Insect Physiol; 2022; 137():104359. PubMed ID: 35041845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial selection for responsiveness to photoperiodic change alters the response to stationary photoperiods in maternal induction of egg diapause in the rice leaf bug Trigonotylus caelestialium.
    Shintani Y
    J Insect Physiol; 2009 Sep; 55(9):818-24. PubMed ID: 19482029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus.
    Urbanová V; Bazalová O; Vaněčková H; Dolezel D
    Insect Biochem Mol Biol; 2016 Mar; 70():184-90. PubMed ID: 26826599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions.
    Ikeno T; Numata H; Goto SG
    Gene; 2008 Aug; 419(1-2):56-61. PubMed ID: 18547745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both the anterior and posterior eyes function as photoreceptors for photoperiodic termination of diapause in the two-spotted spider mite.
    Hori Y; Numata H; Shiga S; Goto SG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Feb; 200(2):161-7. PubMed ID: 24309746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.