These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28144785)

  • 21. Photoperiodic Response in the Pars Intercerebralis Neurons, Including Plast-MIP Neurons, in the Brown-Winged Green Bug,
    Hasebe M; Shiga S
    Zoolog Sci; 2021 Aug; 38(4):317-325. PubMed ID: 34342952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Different Legume Seeds on Individual Performance in the Bean Bug, Riptortus pedestris (Hemiptera: Alydidae).
    Seong JM; Lee KP
    J Econ Entomol; 2021 Dec; 114(6):2326-2335. PubMed ID: 34580732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the brain in photoperiodic regulation of juvenile hormone biosynthesis in the brown-winged green bug Plautia stali.
    Matsumoto K; Numata H; Shiga S
    J Insect Physiol; 2013 Apr; 59(4):387-93. PubMed ID: 23376764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than in the adult stage?
    Hodkova M
    J Insect Physiol; 2015 Jun; 77():39-44. PubMed ID: 25891916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus.
    Dolezel D; Sauman I; Kost'ál V; Hodkova M
    J Biol Rhythms; 2007 Aug; 22(4):335-42. PubMed ID: 17660450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and functional analysis of the female determiner gene in the bean bug, Riptortus pedestris.
    Wang H; Ying J; Mao Z; Wang B; Ye Z; Chen Y; Chen J; Zhang C; Li J; Zhuo J
    Pest Manag Sci; 2024 Mar; 80(3):1240-1248. PubMed ID: 37934463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Male aggressive behavior and exaggerated hindlegs of the bean bug Riptortus pedestris.
    Okada K; Suzaki Y; Okada Y; Miyatake T
    Zoolog Sci; 2011 Sep; 28(9):659-63. PubMed ID: 21882954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera).
    Ehmer B; Gronenberg W
    J Comp Neurol; 2002 Sep; 451(4):362-73. PubMed ID: 12210130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont.
    Kikuchi Y; Yumoto I
    Appl Environ Microbiol; 2013 Mar; 79(6):2088-91. PubMed ID: 23291548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is period gene causally involved in the photoperiodic regulation of reproductive diapause in the linden bug, Pyrrhocoris apterus?
    Dolezel D; Vanecková H; Sauman I; Hodkova M
    J Insect Physiol; 2005 Jun; 51(6):655-9. PubMed ID: 15993130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoperiodic response of larvae of the yellow-spotted longicorn beetle Psacothea hilaris after removal of the stemmata.
    Shintani Y; Numata H
    J Insect Physiol; 2010 Sep; 56(9):1125-9. PubMed ID: 20230824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris.
    Kim JK; Lee BL
    Arch Insect Biochem Physiol; 2015 Jan; 88(1):4-17. PubMed ID: 25521625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional profiling reveals a critical role of GmFT2a in soybean staygreen syndrome caused by the pest Riptortus pedestris.
    Wei Z; Guo W; Jiang S; Yan D; Shi Y; Wu B; Xin X; Chen L; Cai Y; Zhang H; Li Y; Huang H; Li J; Yan F; Zhang C; Hou W; Chen J; Sun Z
    New Phytol; 2023 Mar; 237(5):1876-1890. PubMed ID: 36404128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae.
    Shiga S; Numata H
    J Exp Biol; 2009 Mar; 212(Pt 6):867-77. PubMed ID: 19252004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retinal projections in lamprey (Lampetra fluviatilis).
    Kosareva AA
    J Hirnforsch; 1980; 21(3):243-56. PubMed ID: 6158536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Characterization of Three Novel Insect-Specific Viruses Discovered in the Bean Bug,
    Guo C; Ye Z; Hu B; Shan S; Chen J; Sun Z; Li J; Wei Z
    Viruses; 2022 Nov; 14(11):. PubMed ID: 36423109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris.
    Ikeno T; Katagiri C; Numata H; Goto SG
    Insect Mol Biol; 2011 Jun; 20(3):409-15. PubMed ID: 21435062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis.
    Goto SG; Numata H
    J Insect Physiol; 2009 May; 55(5):401-7. PubMed ID: 19084533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plausible neural circuitry for photoperiodism in the blow fly, Protophormia terraenovae.
    Shiga S
    Acta Biol Hung; 2012; 63 Suppl 2():36-47. PubMed ID: 22776471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects.
    Goto SG
    J Comp Physiol B; 2016 Dec; 186(8):969-984. PubMed ID: 27424162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.