These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28144839)
1. Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). Ferreira AM; Cruz-Moreira D; Cerqueira L; Miranda JM; Azevedo NF Biomed Microdevices; 2017 Mar; 19(1):11. PubMed ID: 28144839 [TBL] [Abstract][Full Text] [Related]
2. Integration of FISH and Microfluidics. Rodrigues CF; Azevedo NF; Miranda JM Methods Mol Biol; 2021; 2246():249-261. PubMed ID: 33576994 [TBL] [Abstract][Full Text] [Related]
3. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures. Calderaro A; Martinelli M; Motta F; Larini S; Arcangeletti MC; Medici MC; Chezzi C; De Conto F Clin Microbiol Infect; 2014 Aug; 20(8):O468-75. PubMed ID: 24304149 [TBL] [Abstract][Full Text] [Related]
4. A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Kao KJ; Tai CH; Chang WH; Yeh TS; Chen TC; Lee GB Biosens Bioelectron; 2015 Jul; 69():272-9. PubMed ID: 25770459 [TBL] [Abstract][Full Text] [Related]
5. Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. Santos RS; Guimarães N; Madureira P; Azevedo NF J Biotechnol; 2014 Oct; 187():16-24. PubMed ID: 25034435 [TBL] [Abstract][Full Text] [Related]
6. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration. Rocha R; Santos RS; Madureira P; Almeida C; Azevedo NF J Biotechnol; 2016 May; 226():1-7. PubMed ID: 27021959 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of PNA FISH® Yeast Traffic Light in identification of Candida species from blood and non-blood culture specimens. Radic M; Goic-Barisic I; Novak A; Rubic Z; Tonkic M Med Mycol; 2016 Aug; 54(6):654-8. PubMed ID: 27067303 [TBL] [Abstract][Full Text] [Related]
8. FISH and chips: a review of microfluidic platforms for FISH analysis. Rodriguez-Mateos P; Azevedo NF; Almeida C; Pamme N Med Microbiol Immunol; 2020 Jun; 209(3):373-391. PubMed ID: 31965296 [TBL] [Abstract][Full Text] [Related]
9. Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Xi C; Balberg M; Boppart SA; Raskin L Appl Environ Microbiol; 2003 Sep; 69(9):5673-8. PubMed ID: 12957960 [TBL] [Abstract][Full Text] [Related]
10. PNA-based fluorescence in situ hybridization for identification of bacteria in clinical samples. Fazli M; Bjarnsholt T; Høiby N; Givskov M; Tolker-Nielsen T Methods Mol Biol; 2014; 1211():261-71. PubMed ID: 25218392 [TBL] [Abstract][Full Text] [Related]
11. Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Stender H; Mollerup TA; Lund K; Petersen KH; Hongmanee P; Godtfredsen SE Int J Tuberc Lung Dis; 1999 Sep; 3(9):830-7. PubMed ID: 10488893 [TBL] [Abstract][Full Text] [Related]
12. Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii. Zhang X; Wu S; Li K; Shuai J; Dong Q; Fang W Int J Food Microbiol; 2012 Jul; 157(2):309-13. PubMed ID: 22633537 [TBL] [Abstract][Full Text] [Related]
13. The peptide nucleic acids as probes for chromosomal analysis: application to human oocytes, polar bodies and preimplantation embryos. Paulasova P; Andréo B; Diblik J; Macek M; Pellestor F Mol Hum Reprod; 2004 Jun; 10(6):467-72. PubMed ID: 15100384 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Almeida C; Azevedo NF; Fernandes RM; Keevil CW; Vieira MJ Appl Environ Microbiol; 2010 Jul; 76(13):4476-85. PubMed ID: 20453122 [TBL] [Abstract][Full Text] [Related]
15. Identification of indicator microorganisms using a standardized PNA FISH method. Perry-O'Keefe H; Rigby S; Oliveira K; Sørensen D; Stender H; Coull J; Hyldig-Nielsen JJ J Microbiol Methods; 2001 Dec; 47(3):281-92. PubMed ID: 11714518 [TBL] [Abstract][Full Text] [Related]
16. PNA FISH: an intelligent stain for rapid diagnosis of infectious diseases. Stender H Expert Rev Mol Diagn; 2003 Sep; 3(5):649-55. PubMed ID: 14510184 [TBL] [Abstract][Full Text] [Related]
17. Microfluidics combined with fluorescence Barbosa VB; Rodrigues CF; Cerqueira L; Miranda JM; Azevedo NF Front Bioeng Biotechnol; 2022; 10():987669. PubMed ID: 36213081 [TBL] [Abstract][Full Text] [Related]
18. Peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay for specific detection of Mycobacterium immunogenum and DNA-FISH assay for analysis of pseudomonads in metalworking fluids and sputum. Selvaraju SB; Kapoor R; Yadav JS Mol Cell Probes; 2008; 22(5-6):273-80. PubMed ID: 18621122 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of dual-color fluorescence in situ hybridization with peptide nucleic acid probes for the detection of Mycobacterium tuberculosis and non-tuberculous mycobacteria in clinical specimens. Kim N; Lee SH; Yi J; Chang CL Ann Lab Med; 2015 Sep; 35(5):500-5. PubMed ID: 26206686 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics. Xi C; Raskin L; Boppart SA Biomed Microdevices; 2005 Mar; 7(1):7-12. PubMed ID: 15834515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]