These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
7. Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. Wählby U; Jonsson EN; Karlsson MO AAPS PharmSci; 2002; 4(4):E27. PubMed ID: 12645999 [TBL] [Abstract][Full Text] [Related]
8. An Evolutionary Search Algorithm for Covariate Models in Population Pharmacokinetic Analysis. Yamashita F; Fujita A; Sasa Y; Higuchi Y; Tsuda M; Hashida M J Pharm Sci; 2017 Sep; 106(9):2407-2411. PubMed ID: 28450239 [TBL] [Abstract][Full Text] [Related]
9. Further Evaluation of Covariate Analysis using Empirical Bayes Estimates in Population Pharmacokinetics: the Perception of Shrinkage and Likelihood Ratio Test. Xu XS; Yuan M; Yang H; Feng Y; Xu J; Pinheiro J AAPS J; 2017 Jan; 19(1):264-273. PubMed ID: 27761720 [TBL] [Abstract][Full Text] [Related]
10. A fast method for testing covariates in population PK/PD Models. Khandelwal A; Harling K; Jonsson EN; Hooker AC; Karlsson MO AAPS J; 2011 Sep; 13(3):464-72. PubMed ID: 21725709 [TBL] [Abstract][Full Text] [Related]
11. A reduction in between subject variability is not mandatory for selecting a new covariate. Lagishetty CV; Vajjah P; Duffull SB J Pharmacokinet Pharmacodyn; 2012 Aug; 39(4):383-92. PubMed ID: 22767340 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous confidence bands for nonlinear regression models with application to population pharmacokinetic analyses. Gsteiger S; Bretz F; Liu W J Biopharm Stat; 2011 Jul; 21(4):708-25. PubMed ID: 21516565 [TBL] [Abstract][Full Text] [Related]
14. Application of resampling techniques to estimate exact significance levels for covariate selection during nonlinear mixed effects model building: some inferences. Gobburu JV; Lawrence J Pharm Res; 2002 Jan; 19(1):92-8. PubMed ID: 11841044 [TBL] [Abstract][Full Text] [Related]
15. Automated covariate model building within NONMEM. Jonsson EN; Karlsson MO Pharm Res; 1998 Sep; 15(9):1463-8. PubMed ID: 9755901 [TBL] [Abstract][Full Text] [Related]
16. Assessment of actual significance levels for covariate effects in NONMEM. Wählby U; Jonsson EN; Karlsson MO J Pharmacokinet Pharmacodyn; 2001 Jun; 28(3):231-52. PubMed ID: 11468939 [TBL] [Abstract][Full Text] [Related]
17. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes. Pi L; Halabi S Diagn Progn Res; 2018; 2():. PubMed ID: 30393771 [TBL] [Abstract][Full Text] [Related]
18. Covariate detection in population pharmacokinetics using partially linear mixed effects models. Bonate PL Pharm Res; 2005 Apr; 22(4):541-9. PubMed ID: 15846461 [TBL] [Abstract][Full Text] [Related]
19. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level. Moerbeek M; van Schie S BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771 [TBL] [Abstract][Full Text] [Related]
20. Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Datta S; Le-Rademacher J; Datta S Biometrics; 2007 Mar; 63(1):259-71. PubMed ID: 17447952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]