These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28144863)

  • 1. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100.
    Rajasekar A; Xiao W; Sethuraman M; Parthipan P; Elumalai P
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8120-8136. PubMed ID: 28144863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.
    Yang SS; Lin JY; Lin YT
    J Microbiol Immunol Infect; 1998 Sep; 31(3):151-64. PubMed ID: 10496152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.
    Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C
    Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic corrosion in the polluted urban atmosphere of Hong Kong.
    Liu B; Wang DW; Guo H; Ling ZH; Cheung K
    Environ Monit Assess; 2015 Jan; 187(1):4112. PubMed ID: 25400029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm.
    Procópio L
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6397-6411. PubMed ID: 32458139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment.
    Wang J; Xiong F; Liu H; Zhang T; Li Y; Li C; Xia W; Wang H; Liu H
    Bioelectrochemistry; 2019 Oct; 129():10-17. PubMed ID: 31075534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines.
    Rajasekar A; Anandkumar B; Maruthamuthu S; Ting YP; Rahman PK
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1175-88. PubMed ID: 19844704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV).
    Kan J; Chellamuthu P; Obraztsova A; Moore JE; Nealson KH
    J Appl Microbiol; 2011 Aug; 111(2):329-37. PubMed ID: 21599813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of microfouling and corrosive bacterial community of a firewater distribution system.
    Palaniappan B; Toleti SR
    J Biosci Bioeng; 2016 Apr; 121(4):435-41. PubMed ID: 26467696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan derivative corrosion inhibitor for aluminum alloy in sodium chloride solution: A green organic/inorganic hybrid.
    Lai X; Hu J; Ruan T; Zhou J; Qu J
    Carbohydr Polym; 2021 Aug; 265():118074. PubMed ID: 33966838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film.
    Shen Y; Dong Y; Yang Y; Li Q; Zhu H; Zhang W; Dong L; Yin Y
    Bioelectrochemistry; 2020 Apr; 132():107408. PubMed ID: 31816577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems.
    Bolton N; Critchley M; Fabien R; Cromar N; Fallowfield H
    J Appl Microbiol; 2010 Jul; 109(1):239-47. PubMed ID: 20070443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion-Resistant Steel-MgO Composites as Refractory Materials for Molten Aluminum Alloys.
    Malczyk P; Zienert T; Kerber F; Weigelt C; Sauke SO; Semrau H; G Aneziris C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of an Antarctic thermophilic consortium and its influence on the electrochemical behavior of aluminum alloy 7075-T6.
    Atalah J; Blamey L; Köhler H; Alfaro-Valdés HM; Galarce C; Alvarado C; Sancy M; Páez M; Blamey JM
    Bioelectrochemistry; 2020 Jun; 133():107450. PubMed ID: 31978857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.
    Gandolfi I; Bertolini V; Bestetti G; Ambrosini R; Innocente E; Rampazzo G; Papacchini M; Franzetti A
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4867-77. PubMed ID: 25592734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomonas xiamenensis in the cutting fluids on corrosion behavior of aluminum alloy 2219.
    Shen Y; Dong Y; Zhu H; Dong L
    Bioelectrochemistry; 2023 Apr; 150():108350. PubMed ID: 36525771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.
    Románszki L; Datsenko I; May Z; Telegdi J; Nyikos L; Sand W
    Bioelectrochemistry; 2014 Jun; 97():7-14. PubMed ID: 24239277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulphide production and corrosion in seawaters during exposure to FAME diesel.
    Lee JS; Ray RI; Little BJ; Duncan KE; Oldham AL; Davidova IA; Suflita JM
    Biofouling; 2012; 28(5):465-78. PubMed ID: 22594394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.