These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Cao X; Zheng Y; Wu S; Yang N; Wu J; Liu B; Ye W; Yang M; Yue X Food Funct; 2019 Aug; 10(8):5046-5058. PubMed ID: 31359016 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive characterization of bioactive peptides from Buffalo (Bubalus bubalis) colostrum and milk fat globule membrane proteins. Brijesha N; Aparna HS Food Res Int; 2017 Jul; 97():95-103. PubMed ID: 28578070 [TBL] [Abstract][Full Text] [Related]
4. Comparative Site-Specific Guan B; Cao X; Yang M; Yue X; Liu D J Agric Food Chem; 2024 Jan; 72(2):1405-1417. PubMed ID: 38181196 [TBL] [Abstract][Full Text] [Related]
5. Quantitative N-glycoproteomics of milk fat globule membrane in human colostrum and mature milk reveals changes in protein glycosylation during lactation. Cao X; Kang S; Yang M; Li W; Wu S; Han H; Meng L; Wu R; Yue X Food Funct; 2018 Feb; 9(2):1163-1172. PubMed ID: 29363704 [TBL] [Abstract][Full Text] [Related]
6. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. Reinhardt TA; Lippolis JD J Dairy Sci; 2008 Jun; 91(6):2307-18. PubMed ID: 18487653 [TBL] [Abstract][Full Text] [Related]
7. Glycome characterization of immunoglobulin G from buffalo (Bubalus bubalis) colostrum. Bhanu LS; Amano M; Nishimura SI; Aparna HS Glycoconj J; 2015 Nov; 32(8):625-34. PubMed ID: 26239923 [TBL] [Abstract][Full Text] [Related]
8. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Yang M; Cong M; Peng X; Wu J; Wu R; Liu B; Ye W; Yue X Food Funct; 2016 May; 7(5):2438-50. PubMed ID: 27159491 [TBL] [Abstract][Full Text] [Related]
9. Sensitive and robust MALDI-TOF-MS glycomics analysis enabled by Girard's reagent T on-target derivatization (GTOD) of reducing glycans. Zhang Y; Wang B; Jin W; Wen Y; Nan L; Yang M; Liu R; Zhu Y; Wang C; Huang L; Song X; Wang Z Anal Chim Acta; 2019 Feb; 1048():105-114. PubMed ID: 30598139 [TBL] [Abstract][Full Text] [Related]
10. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane. Cebo C; Lopez C; Henry C; Beauvallet C; Ménard O; Bevilacqua C; Bouvier F; Caillat H; Martin P J Dairy Sci; 2012 Nov; 95(11):6215-29. PubMed ID: 22921619 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Phosphoproteomics of Milk Fat Globule Membrane in Human Colostrum and Mature Milk: New Insights into Changes in Protein Phosphorylation during Lactation. Yang M; Deng W; Cao X; Wang L; Yu N; Zheng Y; Wu J; Wu R; Yue X J Agric Food Chem; 2020 Apr; 68(15):4546-4556. PubMed ID: 32208690 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the milk fat globule membrane proteome in colostrum and mature milk of Xinong Saanen goats. Sun Y; Wang C; Sun X; Jiang S; Guo M J Dairy Sci; 2020 Apr; 103(4):3017-3024. PubMed ID: 32089302 [TBL] [Abstract][Full Text] [Related]
13. Quantitative label-free site-specific glycoproteomic analysis of the milk fat globule membrane protein in human colostrum and mature milk. Guan B; Zhang Z; Liu X; Zhao S; Bai X; Luo X; Feng D; Yang L; Cao X; Yue X Carbohydr Polym; 2023 Apr; 306():120588. PubMed ID: 36746580 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of host defence proteins in milk using a proteomic approach. Smolenski G; Haines S; Kwan FY; Bond J; Farr V; Davis SR; Stelwagen K; Wheeler TT J Proteome Res; 2007 Jan; 6(1):207-15. PubMed ID: 17203965 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory potential of Buffalo (Bubalus bubalis) colostrum immunoglobulin G on Klebsiella pneumoniae. L S MB; Nishimura SI; H S A Int J Biol Macromol; 2016 Jul; 88():138-45. PubMed ID: 27017977 [TBL] [Abstract][Full Text] [Related]
16. Changes in milk fat globule membrane proteome after pasteurization in human, bovine and caprine species. Ma Y; Zhang L; Wu Y; Zhou P Food Chem; 2019 May; 279():209-215. PubMed ID: 30611482 [TBL] [Abstract][Full Text] [Related]
17. Effect of gestational age (preterm or full term) on lipid composition of the milk fat globule and its membrane in human colostrum. Pérez-Gálvez A; Calvo MV; Megino-Tello J; Aguayo-Maldonado J; Jiménez-Flores R; Fontecha J J Dairy Sci; 2020 Sep; 103(9):7742-7751. PubMed ID: 32622597 [TBL] [Abstract][Full Text] [Related]
18. Major proteins of the goat milk fat globule membrane. Cebo C; Caillat H; Bouvier F; Martin P J Dairy Sci; 2010 Mar; 93(3):868-76. PubMed ID: 20172206 [TBL] [Abstract][Full Text] [Related]
19. Capillary affinity electrophoresis using lectins for the analysis of milk oligosaccharide structure and its application to bovine colostrum oligosaccharides. Nakajima K; Kinoshita M; Matsushita N; Urashima T; Suzuki M; Suzuki A; Kakehi K Anal Biochem; 2006 Jan; 348(1):105-14. PubMed ID: 16289347 [TBL] [Abstract][Full Text] [Related]
20. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins from donkey colostrum and mature milk. Li W; Li M; Cao X; Yang M; Han H; Kong F; Yue X Food Funct; 2019 Jul; 10(7):4256-4268. PubMed ID: 31259333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]