These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28145283)

  • 1. Accurate description of the electronic structure of organic semiconductors by GW methods.
    Marom N
    J Phys Condens Matter; 2017 Mar; 29(10):103003. PubMed ID: 28145283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Relation between Equation-of-Motion Coupled-Cluster Theory and the GW Approximation.
    Lange MF; Berkelbach TC
    J Chem Theory Comput; 2018 Aug; 14(8):4224-4236. PubMed ID: 30028614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules.
    Bruneval F; Dattani N; van Setten MJ
    Front Chem; 2021; 9():749779. PubMed ID: 35004607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.
    Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Status in calculating electronic excited states in transition metal oxides from first principles.
    Bendavid LI; Carter EA
    Top Curr Chem; 2014; 347():47-98. PubMed ID: 24488486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle energy spectra of alkali-metal clusters: all-electron first-principles calculations.
    Noguchi Y; Ishii S; Ohno K; Sasaki T
    J Chem Phys; 2008 Sep; 129(10):104104. PubMed ID: 19044905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.
    Leng X; Yin H; Liang D; Ma Y
    J Chem Phys; 2015 Sep; 143(11):114501. PubMed ID: 26395713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic/inorganic hybrid materials: challenges for ab initio methodology.
    Draxl C; Nabok D; Hannewald K
    Acc Chem Res; 2014 Nov; 47(11):3225-32. PubMed ID: 25171272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of Quasi-Particle Energies of Aromatic Self-Assembled Monolayers on Au(111).
    Li Y; Lu D; Galli G
    J Chem Theory Comput; 2009 Apr; 5(4):881-6. PubMed ID: 26609596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid functionals and GW approximation in the FLAPW method.
    Friedrich C; Betzinger M; Schlipf M; Blügel S; Schindlmayr A
    J Phys Condens Matter; 2012 Jul; 24(29):293201. PubMed ID: 22773268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionization potentials of semiconductors from first-principles.
    Jiang H; Shen YC
    J Chem Phys; 2013 Oct; 139(16):164114. PubMed ID: 24182011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.
    Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X
    J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connections and performances of Green's function methods for charged and neutral excitations.
    Monino E; Loos PF
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical effects in electron spectroscopy.
    Zhou JS; Kas JJ; Sponza L; Reshetnyak I; Guzzo M; Giorgetti C; Gatti M; Sottile F; Rehr JJ; Reining L
    J Chem Phys; 2015 Nov; 143(18):184109. PubMed ID: 26567648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark.
    Liao P; Carter EA
    Phys Chem Chem Phys; 2011 Sep; 13(33):15189-99. PubMed ID: 21761032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the GW Approximation with CCSD(T) for Charged Excitations Across the Oligoacenes.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Theory Comput; 2016 Jun; 12(6):2834-42. PubMed ID: 27123935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 May; 30(21):215502. PubMed ID: 29667601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites.
    Guzzo M; Lani G; Sottile F; Romaniello P; Gatti M; Kas JJ; Rehr JJ; Silly MG; Sirotti F; Reining L
    Phys Rev Lett; 2011 Oct; 107(16):166401. PubMed ID: 22107408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles determination of defect energy levels through hybrid density functionals and GW.
    Chen W; Pasquarello A
    J Phys Condens Matter; 2015 Apr; 27(13):133202. PubMed ID: 25744104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.