BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28145457)

  • 1. Two strategies to engineer flexible loops for improved enzyme thermostability.
    Yu H; Yan Y; Zhang C; Dalby PA
    Sci Rep; 2017 Feb; 7():41212. PubMed ID: 28145457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cofactor-binding loop mutations on thermotolerance and activity of E. coli transketolase.
    Morris P; Rios-Solis L; García-Arrazola R; Lye GJ; Dalby PA
    Enzyme Microb Technol; 2016 Jul; 89():85-91. PubMed ID: 27233131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off.
    Yu H; Dalby PA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12192-E12200. PubMed ID: 30530661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics.
    Yu H; Dalby PA
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):E11043-E11052. PubMed ID: 30404916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-tuning the activity and stability of an evolved enzyme active-site through noncanonical amino-acids.
    Wilkinson HC; Dalby PA
    FEBS J; 2021 Mar; 288(6):1935-1955. PubMed ID: 32897608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes.
    Affaticati PE; Dai SB; Payongsri P; Hailes HC; Tittmann K; Dalby PA
    Sci Rep; 2016 Oct; 6():35716. PubMed ID: 27767080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second generation engineering of transketolase for polar aromatic aldehyde substrates.
    Payongsri P; Steadman D; Hailes HC; Dalby PA
    Enzyme Microb Technol; 2015 Apr; 71():45-52. PubMed ID: 25765309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational substrate and enzyme engineering of transketolase for aromatics.
    Payongsri P; Steadman D; Strafford J; MacMurray A; Hailes HC; Dalby PA
    Org Biomol Chem; 2012 Dec; 10(45):9021-9. PubMed ID: 23079923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase.
    Kim MS; Weaver JD; Lei XG
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):751-8. PubMed ID: 18443782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase.
    Fei B; Xu H; Cao Y; Ma S; Guo H; Song T; Qiao D; Cao Y
    J Ind Microbiol Biotechnol; 2013 May; 40(5):457-64. PubMed ID: 23494709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations.
    Huang J; Xie DF; Feng Y
    Biochem Biophys Res Commun; 2017 Jan; 483(1):397-402. PubMed ID: 28017723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis.
    Xie DF; Yang JX; Lv CJ; Mei JQ; Wang HP; Hu S; Zhao WR; Cao JR; Tu JL; Huang J; Mei LH
    J Biotechnol; 2019 Mar; 293():8-16. PubMed ID: 30703468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents.
    Hao J; Berry A
    Protein Eng Des Sel; 2004 Sep; 17(9):689-97. PubMed ID: 15531627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Strategy for Thermostability Improvement of Trypsin Based on N-Glycosylation within the Ω-Loop Region.
    Guo C; Liu Y; Yu H; Du K; Gan Y; Huang H
    J Microbiol Biotechnol; 2016 Jul; 26(7):1163-72. PubMed ID: 27012235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Protocols for Generating Focused Mutant Libraries and Screening for Thermostable Proteins.
    Fürst MJLJ; Martin C; Lončar N; Fraaije MW
    Methods Enzymol; 2018; 608():151-187. PubMed ID: 30173762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain.
    Jun C; Joo JC; Lee JH; Kim YH
    J Biotechnol; 2014 Mar; 174():22-8. PubMed ID: 24480573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the residues on "A" surface and C-terminal region to improve thermostability of nitrilase.
    Xu Z; Cai T; Xiong N; Zou SP; Xue YP; Zheng YG
    Enzyme Microb Technol; 2018 Jun; 113():52-58. PubMed ID: 29602387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica.
    Wen S; Tan T; Zhao H
    J Biotechnol; 2012 Dec; 164(2):248-53. PubMed ID: 22982168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.