BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28145457)

  • 21. Enhancement of the substrate scope of transketolase.
    Ranoux A; Karmee SK; Jin J; Bhaduri A; Caiazzo A; Arends IW; Hanefeld U
    Chembiochem; 2012 Sep; 13(13):1921-31. PubMed ID: 22821820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α-hydroxyketones.
    Yu H; Hernández López RI; Steadman D; Méndez-Sánchez D; Higson S; Cázares-Körner A; Sheppard TD; Ward JM; Hailes HC; Dalby PA
    FEBS J; 2020 May; 287(9):1758-1776. PubMed ID: 31647171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Molecular engineering of transketolase from
    Wang J; Li W; Xin Z; Feng W; Sun X; Yuan J
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4615-4629. PubMed ID: 36593197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Donor Promiscuity of a Thermostable Transketolase by Directed Evolution: Efficient Complementation of 1-Deoxy-d-xylulose-5-phosphate Synthase Activity.
    Saravanan T; Junker S; Kickstein M; Hein S; Link MK; Ranglack J; Witt S; Lorillière M; Hecquet L; Fessner WD
    Angew Chem Int Ed Engl; 2017 May; 56(19):5358-5362. PubMed ID: 28378514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational design of a biologically active enzyme.
    Dwyer MA; Looger LL; Hellinga HW
    Science; 2004 Jun; 304(5679):1967-71. PubMed ID: 15218149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant.
    Feng X; Tang H; Han B; Zhang L; Lv B; Li C
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9955-9966. PubMed ID: 27325137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning.
    Yoshida K; Kawai S; Fujitani M; Koikeda S; Kato R; Ema T
    Sci Rep; 2021 Jun; 11(1):11883. PubMed ID: 34088952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increasing the thermal stability of an oligomeric protein, beta-glucuronidase.
    Flores H; Ellington AD
    J Mol Biol; 2002 Jan; 315(3):325-37. PubMed ID: 11786015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of hydrophobic core of E. coli malate dehydrogenase based on the side-chain packing.
    Kono H; Nishiyama M; Tanokura M; Doi J
    Pac Symp Biocomput; 1997; ():210-21. PubMed ID: 9390293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability.
    Shakeel T; Gupta M; Fatma Z; Kumar R; Kumar R; Singh R; Sharma M; Jade D; Gupta D; Fatma T; Yazdani SS
    J Biol Chem; 2018 Jun; 293(24):9148-9161. PubMed ID: 29632075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters.
    Huang L; Xu JH; Yu HL
    J Biotechnol; 2015 Jun; 203():54-61. PubMed ID: 25795440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.
    Wu TH; Chen CC; Cheng YS; Ko TP; Lin CY; Lai HL; Huang TY; Liu JR; Guo RT
    J Biotechnol; 2014 Apr; 175():1-6. PubMed ID: 24518264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Second-Generation Engineering of a Thermostable Transketolase (TK
    Zhou C; Saravanan T; Lorillière M; Wei D; Charmantray F; Hecquet L; Fessner WD; Yi D
    Chembiochem; 2017 Mar; 18(5):455-459. PubMed ID: 28005308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis.
    Liu Z; Zhao H; Han L; Cui W; Zhou L; Zhou Z
    Biotechnol Bioeng; 2019 Aug; 116(8):1833-1843. PubMed ID: 30934114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural stability of E. coli transketolase to temperature and pH denaturation.
    Jahromi RR; Morris P; Martinez-Torres RJ; Dalby PA
    J Biotechnol; 2011 Sep; 155(2):209-16. PubMed ID: 21723889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling effects of distal loops on structural stability and enzymatic activity of Escherichia coli dihydrofolate reductase revealed by deletion mutants.
    Horiuchi Y; Ohmae E; Tate S; Gekko K
    Biochim Biophys Acta; 2010 Apr; 1804(4):846-55. PubMed ID: 20045086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving thermostability of papain through structure-based protein engineering.
    Choudhury D; Biswas S; Roy S; Dattagupta JK
    Protein Eng Des Sel; 2010 Jun; 23(6):457-67. PubMed ID: 20304972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remarkable improvement in the heat stability of CutA1 from Escherichia coli by rational protein design.
    Matsuura Y; Ota M; Tanaka T; Takehira M; Ogasahara K; Bagautdinov B; Kunishima N; Yutani K
    J Biochem; 2010 Oct; 148(4):449-58. PubMed ID: 20639520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.