These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28145496)

  • 1. Dominant role of plant physiology in trend and variability of gross primary productivity in North America.
    Zhou S; Zhang Y; Ciais P; Xiao X; Luo Y; Caylor KK; Huang Y; Wang G
    Sci Rep; 2017 Feb; 7():41366. PubMed ID: 28145496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data.
    Xu X; Du H; Fan W; Hu J; Mao F; Dong H
    J Environ Manage; 2019 Sep; 246():605-616. PubMed ID: 31202828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint control of terrestrial gross primary productivity by plant phenology and physiology.
    Xia J; Niu S; Ciais P; Janssens IA; Chen J; Ammann C; Arain A; Blanken PD; Cescatti A; Bonal D; Buchmann N; Curtis PS; Chen S; Dong J; Flanagan LB; Frankenberg C; Georgiadis T; Gough CM; Hui D; Kiely G; Li J; Lund M; Magliulo V; Marcolla B; Merbold L; Montagnani L; Moors EJ; Olesen JE; Piao S; Raschi A; Roupsard O; Suyker AE; Urbaniak M; Vaccari FP; Varlagin A; Vesala T; Wilkinson M; Weng E; Wohlfahrt G; Yan L; Luo Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2788-93. PubMed ID: 25730847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Extraction of temperate vegetation phenology thresholds in North America based on flux tower observation data].
    Zhao JJ; Liu LY
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):311-8. PubMed ID: 23705372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined MODIS land surface temperature and greenness data for modeling vegetation phenology, physiology, and gross primary production in terrestrial ecosystems.
    Xu X; Zhou G; Du H; Mao F; Xu L; Li X; Liu L
    Sci Total Environ; 2020 Jul; 726():137948. PubMed ID: 32481215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating global annual gross primary production based on satellite-derived phenology and maximal carbon uptake capacity.
    Xu X; Chen D
    Environ Res; 2024 Jul; 252(Pt 4):119063. PubMed ID: 38740292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence.
    Chen S; Huang Y; Gao S; Wang G
    Sci Total Environ; 2019 May; 663():45-59. PubMed ID: 30708216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of vegetation carbon uptake to snow-induced phenological and physiological changes across temperate China.
    Chen S; Huang Y; Wang G
    Sci Total Environ; 2019 Nov; 692():188-200. PubMed ID: 31349162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic capacity dominates the interannual variation of annual gross primary productivity in the Northern Hemisphere.
    Zhang W; Yu G; Chen Z; Zhu X; Han L; Liu Z; Lin Y; Han S; Sha L; Wang H; Wang Y; Yan J; Zhang Y; Gharun M
    Sci Total Environ; 2022 Nov; 849():157856. PubMed ID: 35934043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests.
    Fang J; Lutz JA; Wang L; Shugart HH; Yan X
    Glob Chang Biol; 2020 Dec; 26(12):6974-6988. PubMed ID: 32926493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interannual variability in summer climate change controls GPP long-term changes.
    He P; Ma X; Sun Z
    Environ Res; 2022 Sep; 212(Pt C):113409. PubMed ID: 35523276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spatio-temporal dynamics of gross primary productivity in China from 1982 to 2017 based on different datasets].
    Cao YJ; Song ZH; Wu ZT; DU ZQ
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2644-2652. PubMed ID: 36384598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of phenology on the carbon exchange process in grassland and maize cropland ecosystems across a semiarid area of China.
    Du Q; Liu H; Li Y; Xu L; Diloksumpun S
    Sci Total Environ; 2019 Dec; 695():133868. PubMed ID: 31422329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal patterns of phenological metrics and their relationships with environmental drivers in grasslands.
    Wang Y; Liu Y; Zhou L; Zhou G
    Sci Total Environ; 2024 Aug; 938():173489. PubMed ID: 38796002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stronger advance of urban spring vegetation phenology narrows vegetation productivity difference between urban settings and natural environments.
    Yang L; Zhao S
    Sci Total Environ; 2023 Apr; 868():161649. PubMed ID: 36657668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.
    Migliavacca M; Reichstein M; Richardson AD; Mahecha MD; Cremonese E; Delpierre N; Galvagno M; Law BE; Wohlfahrt G; Black TA; Carvalhais N; Ceccherini G; Chen J; Gobron N; Koffi E; Munger JW; Perez-Priego O; Robustelli M; Tomelleri E; Cescatti A
    Glob Chang Biol; 2015 Jan; 21(1):363-76. PubMed ID: 24990223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis.
    Duursma RA; Kolari P; Perämäki M; Pulkkinen M; Mäkelä A; Nikinmaa E; Hari P; Aurela M; Berbigier P; Bernhofer CH; Grünwald T; Loustau D; Mölder M; Verbeeck H; Vesala T
    Tree Physiol; 2009 May; 29(5):621-39. PubMed ID: 19324698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years.
    Yao Y; Wang X; Li Y; Wang T; Shen M; Du M; He H; Li Y; Luo W; Ma M; Ma Y; Tang Y; Wang H; Zhang X; Zhang Y; Zhao L; Zhou G; Piao S
    Glob Chang Biol; 2018 Jan; 24(1):184-196. PubMed ID: 28727222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the dominant climate-driven uncertainties in modeling gross primary productivity.
    Ma Y; Yue X; Zhou H; Gong C; Lei Y; Tian C; Cao Y
    Sci Total Environ; 2021 Dec; 800():149518. PubMed ID: 34392204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of spring phenology variation on GPP and its lag feedback for winter wheat over the North China Plain.
    Guo L; Gao J; Ma S; Chang Q; Zhang L; Wang S; Zou Y; Wu S; Xiao X
    Sci Total Environ; 2020 Jul; 725():138342. PubMed ID: 32464745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.