These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28145514)

  • 1. Photon-phonon Interaction in a Microfiber Induced by Optical and Electrostrictive Forces.
    Shi YC; Luo W; Xu F; Lu YQ
    Sci Rep; 2017 Feb; 7():41849. PubMed ID: 28145514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces.
    Rakich PT; Davids P; Wang Z
    Opt Express; 2010 Jul; 18(14):14439-53. PubMed ID: 20639929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrigendum: Photon-phonon Interaction in a Microfiber Induced by Optical and Electrostrictive Forces.
    Shi YC; Luo W; Xu F; Lu YQ
    Sci Rep; 2017 Jul; 7():46862. PubMed ID: 28691709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond.
    Liu Q; Bibbó L; Albin S; Wang Q; Lin M; Lu H; Ouyang Z
    Sci Rep; 2018 Jan; 8(1):88. PubMed ID: 29311601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity magnomechanics.
    Zhang X; Zou CL; Jiang L; Tang HX
    Sci Adv; 2016 Mar; 2(3):e1501286. PubMed ID: 27034983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proposal for a quantum traveling Brillouin resonator.
    Harris GI; Sawadsky A; Sfendla YL; Wasserman WW; Bowen WP; Baker CG
    Opt Express; 2020 Jul; 28(15):22450-22461. PubMed ID: 32752505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipatively Controlled Optomechanical Interaction via Cascaded Photon-Phonon Coupling.
    Shen Z; Zhang YL; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2021 Apr; 126(16):163604. PubMed ID: 33961448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain.
    Qiu W; Rakich PT; Shin H; Dong H; Soljačić M; Wang Z
    Opt Express; 2013 Dec; 21(25):31402-19. PubMed ID: 24514715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-resonant acoustic waveguides enabled tailorable Brillouin scattering on chip.
    Lei P; Xu M; Bai Y; Chen Z; Xie X
    Nat Commun; 2024 May; 15(1):3877. PubMed ID: 38719846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser
    Wang N; Wen H; Alvarado Zacarias JC; Antonio-Lopez JE; Zhang Y; Cruz Delgado D; Sillard P; Schülzgen A; Saleh BEA; Amezcua-Correa R; Li G
    Sci Adv; 2023 Jun; 9(26):eadg7841. PubMed ID: 37390201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing optical microfiber nonuniformities at nanoscale.
    Sumetsky M; Dulashko Y; Fini JM; Hale A; Nicholson JW
    Opt Lett; 2006 Aug; 31(16):2393-5. PubMed ID: 16880833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-sound interconversion in optomechanical Dirac materials.
    Wurl C; Fehske H
    Sci Rep; 2017 Aug; 7(1):9811. PubMed ID: 28851997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light.
    Zeringue C; Dajani I; Naderi S; Moore GT; Robin C
    Opt Express; 2012 Sep; 20(19):21196-213. PubMed ID: 23037244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subwavelength engineering for Brillouin gain optimization in silicon optomechanical waveguides.
    Zhang J; Ortiz O; Le Roux X; Cassan E; Vivien L; Marris-Morini D; Lanzillotti-Kimura ND; Alonso-Ramos C
    Opt Lett; 2020 Jul; 45(13):3717-3720. PubMed ID: 32630937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers.
    Mermelstein MD
    Opt Express; 2009 Aug; 17(18):16225-37. PubMed ID: 19724622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerostatically tunable optomechanical oscillators.
    Han K; Kim JH; Bahl G
    Opt Express; 2014 Jan; 22(2):1267-76. PubMed ID: 24515132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-path photon-phonon converter in optomechanical system at single-quantum level.
    Chen TY; Zhang WZ; Fang RZ; Hang CZ; Zhou L
    Opt Express; 2017 May; 25(10):10779-10790. PubMed ID: 28788767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems.
    Cotrufo M; Fiore A; Verhagen E
    Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital angular momentum mode division filtering for photon-phonon coupling.
    Zhu ZH; Sheng LW; Lv ZW; He WM; Gao W
    Sci Rep; 2017 Jan; 7():40526. PubMed ID: 28071736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.