These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28145545)

  • 1. Pipetting-driven microfluidic immunohistochemistry to facilitate enhanced immunoreaction and effective use of antibodies.
    Kim S; Kwon S; Cho CH; Park JK
    Lab Chip; 2017 Feb; 17(4):702-709. PubMed ID: 28145545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breast cancer diagnostics using microfluidic multiplexed immunohistochemistry.
    Kim MS; Kwon S; Park JK
    Methods Mol Biol; 2013; 949():349-64. PubMed ID: 23329453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-immunohistochemistry using a microfluidic probe.
    Lovchik RD; Kaigala GV; Georgiadis M; Delamarche E
    Lab Chip; 2012 Mar; 12(6):1040-3. PubMed ID: 22237742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Immunostaining System Enables Quality Assured and Standardized Immunohistochemical Biomarker Analysis.
    Kwon S; Cho CH; Kwon Y; Lee ES; Park JK
    Sci Rep; 2017 Apr; 7():45968. PubMed ID: 28378835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for rapid cytokeratin immunohistochemical staining in frozen sections.
    Brajkovic S; Dupouy DG; de Leval L; Gijs MA
    Lab Invest; 2017 Aug; 97(8):983-991. PubMed ID: 28553936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic on-chip immunohistochemistry directly from a paraffin-embedded section.
    Cho CH; Kwon S; Kim S; Hong Y; Kim P; Lee ES; Park JK
    Biomicrofluidics; 2018 Jul; 12(4):044110. PubMed ID: 30079122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette.
    Derzsi L; Kaminski TS; Garstecki P
    Lab Chip; 2016 Mar; 16(5):893-901. PubMed ID: 26805579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip.
    Lee M; Lee K; Kim KH; Oh KW; Choo J
    Lab Chip; 2012 Oct; 12(19):3720-7. PubMed ID: 22797080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-fluidic chip platform for the characterization of breast cancer cells using aptamer-assisted immunohistochemistry.
    Yeong Won J; Choi JW; Min J
    Biosens Bioelectron; 2013 Feb; 40(1):161-6. PubMed ID: 22841444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemistry Microarrays.
    Li H; Brewer G; Ongo G; Normandeau F; Omeroglu A; Juncker D
    Anal Chem; 2017 Sep; 89(17):8620-8625. PubMed ID: 28763195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic profiling of breast cancers using a multiplexed microfluidic platform for immunohistochemistry and immunocytochemistry.
    Kim MS; Kwon S; Kim T; Lee ES; Park JK
    Biomaterials; 2011 Feb; 32(5):1396-403. PubMed ID: 21093044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Quality Immunohistochemical Stains Through Computational Assay Parameter Optimization.
    Arar NM; Pati P; Kashyap A; Khartchenko AF; Goksel O; Kaigala GV; Gabrani M
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2952-2963. PubMed ID: 30762525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells.
    Qiu X; De Jesus J; Pennell M; Troiani M; Haun JB
    Lab Chip; 2015 Jan; 15(1):339-350. PubMed ID: 25377468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic immunoassay with plug-in liquid crystal for optical detection of antibody.
    Zhu Q; Yang KL
    Anal Chim Acta; 2015 Jan; 853():696-701. PubMed ID: 25467520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-enhanced electrochemical immunosensors on centrifugal microfluidic platforms.
    Kim TH; Abi-Samra K; Sunkara V; Park DK; Amasia M; Kim N; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2013 Sep; 13(18):3747-54. PubMed ID: 23900555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the 22C3 anti-PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms.
    Ilie M; Khambata-Ford S; Copie-Bergman C; Huang L; Juco J; Hofman V; Hofman P
    PLoS One; 2017; 12(8):e0183023. PubMed ID: 28797130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays.
    Huang SB; Wang SS; Hsieh CH; Lin YC; Lai CS; Wu MH
    Lab Chip; 2013 Mar; 13(6):1133-43. PubMed ID: 23353927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods.
    Chung BG; Park JW; Hu JS; Huang C; Monuki ES; Jeon NL
    BMC Biotechnol; 2007 Sep; 7():60. PubMed ID: 17883868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.
    Cira NJ; Ho JY; Dueck ME; Weibel DB
    Lab Chip; 2012 Mar; 12(6):1052-9. PubMed ID: 22193301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.