BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28145631)

  • 21. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors.
    Zhu X; Zhang H; Huang H; Zhang Y; Hou L; Zhang Z
    Nanotechnology; 2015 Sep; 26(36):365103. PubMed ID: 26291977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?
    Drouin-Ouellet J; Pircs K; Barker RA; Jakobsson J; Parmar M
    Front Neurosci; 2017; 11():530. PubMed ID: 29033781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic mRNA Reprogramming of Human Fibroblast Cells.
    Liu J; Verma PJ
    Methods Mol Biol; 2015; 1330():17-28. PubMed ID: 26621585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reprogramming of Human Fibroblasts with Non-integrating RNA Virus on Feeder-Free or Xeno-Free Conditions.
    Lieu PT
    Methods Mol Biol; 2015; 1330():47-54. PubMed ID: 26621588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SOX2 protein transduction directly converts human fibroblasts into oligodendrocyte-like cells.
    Pouya A; Rassouli H; Rezaei-Larijani M; Salekdeh GH; Baharvand H
    Biochem Biophys Res Commun; 2020 Feb; ():. PubMed ID: 32070492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Conversion of Normal and Alzheimer's Disease Human Fibroblasts into Neuronal Cells by Small Molecules.
    Hu W; Qiu B; Guan W; Wang Q; Wang M; Li W; Gao L; Shen L; Huang Y; Xie G; Zhao H; Jin Y; Tang B; Yu Y; Zhao J; Pei G
    Cell Stem Cell; 2015 Aug; 17(2):204-12. PubMed ID: 26253202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system.
    Xiang L; Bin W; Huali J; Wei J; Jiesheng T; Feng G; Ying L
    J Gene Med; 2007 Aug; 9(8):679-90. PubMed ID: 17605136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide.
    Lv Y; Tao L; Annie Bligh SW; Yang H; Pan Q; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():652-660. PubMed ID: 26652419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring refined conditions for reprogramming cells by recombinant Oct4 protein.
    Thier M; Münst B; Edenhofer F
    Int J Dev Biol; 2010; 54(11-12):1713-21. PubMed ID: 21404191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.
    Sridhar A; Ohlemacher SK; Langer KB; Meyer JS
    Stem Cells Transl Med; 2016 Apr; 5(4):417-26. PubMed ID: 26933039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of ternary insulin-polyethylenimine (PEI)-DNA nanoparticles for enhanced gene delivery and expression in alveolar epithelial cells.
    Elfinger M; Pfeifer C; Uezguen S; Golas MM; Sander B; Maucksch C; Stark H; Aneja MK; Rudolph C
    Biomacromolecules; 2009 Oct; 10(10):2912-20. PubMed ID: 19736976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection.
    Diebold SS; Lehrmann H; Kursa M; Wagner E; Cotten M; Zenke M
    Hum Gene Ther; 1999 Mar; 10(5):775-86. PubMed ID: 10210145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic Insights Into MicroRNA-Induced Neuronal Reprogramming of Human Adult Fibroblasts.
    Lu YL; Yoo AS
    Front Neurosci; 2018; 12():522. PubMed ID: 30116172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuron-specific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine).
    Park IK; Lasiene J; Chou SH; Horner PJ; Pun SH
    J Gene Med; 2007 Aug; 9(8):691-702. PubMed ID: 17582226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyethylenimine-based antisense oligodeoxynucleotides of IL-4 suppress the production of IL-4 in a murine model of airway inflammation.
    Seong JH; Lee KM; Kim ST; Jin SE; Kim CK
    J Gene Med; 2006 Mar; 8(3):314-23. PubMed ID: 16292779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy.
    Theodorou M; Rauser B; Zhang J; Prakash N; Wurst W; Schick JA
    Hum Gene Ther Methods; 2015 Aug; 26(4):107-22. PubMed ID: 26107288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges.
    Steinle H; Behring A; Schlensak C; Wendel HP; Avci-Adali M
    Stem Cells; 2017 Jan; 35(1):68-79. PubMed ID: 27250673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application.
    Vasan L; Park E; David LA; Fleming T; Schuurmans C
    Front Cell Dev Biol; 2021; 9():681087. PubMed ID: 34291049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and Efficient Neural Conversion of Human Hematopoietic Cells.
    Bruzos-Cidon C; Castaño J; Torrecilla M; Sanchez-Pernaute R; Giorgetti A
    Curr Protoc Stem Cell Biol; 2016 Nov; 39(1):1F.15.1-1F.15.20. PubMed ID: 31816186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The iNs and Outs of Direct Reprogramming to Induced Neurons.
    Carter JL; Halmai JANM; Fink KD
    Front Genome Ed; 2020; 2():7. PubMed ID: 34713216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.