These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28145706)

  • 1. Ligand-Promoted Photoreductive Dissolution of Goethite by Atmospheric Low-Molecular Dicarboxylates.
    Wang Z; Fu H; Zhang L; Song W; Chen J
    J Phys Chem A; 2017 Mar; 121(8):1647-1656. PubMed ID: 28145706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1864-70. PubMed ID: 19368184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
    Kim K; Choi W; Hoffmann MR; Yoon HI; Park BK
    Environ Sci Technol; 2010 Jun; 44(11):4142-8. PubMed ID: 20446731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly mobile iron pool from a dissolution-readsorption process.
    Loring JS; Simanova AA; Persson P
    Langmuir; 2008 Jul; 24(14):7054-7. PubMed ID: 18549293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effect of reductive and ligand-promoted dissolution of goethite.
    Wang Z; Schenkeveld WD; Kraemer SM; Giammar DE
    Environ Sci Technol; 2015 Jun; 49(12):7236-44. PubMed ID: 25965980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state dissolution kinetics of aluminum-goethite in the presence of desferrioxamine-B and oxalate ligands.
    Cervini-Silva J; Sposito G
    Environ Sci Technol; 2002 Feb; 36(3):337-42. PubMed ID: 11871546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct photochemistry of adsorbed and coprecipitated dicarboxylates with ferrihydrite: Implications for iron reductive dissolution and carbon stabilization.
    Li Q; Fu Y; Wang L; Cao J; Xia Y; Zhang Z; Wang Z
    Sci Total Environ; 2024 Jun; 927():172333. PubMed ID: 38608896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V).
    Ren HT; Ji ZY; Wu SH; Han X; Liu ZM; Jia SY
    Chemosphere; 2018 Oct; 208():294-302. PubMed ID: 29883864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of anionic surfactants on ligand-promoted dissolution of iron and aluminum hydroxides.
    Carrasco N; Kretzschmar R; Pesch ML; Kraemer SM
    J Colloid Interface Sci; 2008 May; 321(2):279-87. PubMed ID: 18329036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate.
    Wang Z; Chen X; Ji H; Ma W; Chen C; Zhao J
    Environ Sci Technol; 2010 Jan; 44(1):263-8. PubMed ID: 20000366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy.
    Borer P; Hug SJ
    J Colloid Interface Sci; 2014 Feb; 416():44-53. PubMed ID: 24370400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of Goethite.
    Wiederhold JG; Kraemer SM; Teutsch N; Borer PM; Halliday AN; Kretzschmar R
    Environ Sci Technol; 2006 Jun; 40(12):3787-93. PubMed ID: 16830543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.
    Chen H; Grassian VH
    Environ Sci Technol; 2013 Sep; 47(18):10312-21. PubMed ID: 23883276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-dependence of photoreductive dissolution of lepidocrocite (gamma-FeOOH) in the absence and presence of the siderophore DFOB.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1871-6. PubMed ID: 19368185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-promoted dissolution of α-FeOOH nanorods and microrods: size dependence, anion effects (carbonate and phosphate), aggregation and surface adsorption.
    Rubasinghege G; Kyei PK; Scherer MM; Grassian VH
    J Colloid Interface Sci; 2012 Nov; 385(1):15-23. PubMed ID: 22867861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III).
    Zhang J; Li W; Li Y; Zhou L; Lan Y
    Environ Pollut; 2019 Feb; 245():711-718. PubMed ID: 30500750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters.
    Garg S; Xing G; Waite TD
    Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH).
    Amstaetter K; Borch T; Larese-Casanova P; Kappler A
    Environ Sci Technol; 2010 Jan; 44(1):102-8. PubMed ID: 20039739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces.
    Alexandrov V; Rosso KM
    Phys Chem Chem Phys; 2015 Jun; 17(22):14518-31. PubMed ID: 25968615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles.
    Lyngsie G; Krumina L; Tunlid A; Persson P
    Sci Rep; 2018 Jul; 8(1):10834. PubMed ID: 30018415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.