These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28145706)

  • 21. Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles.
    Lyngsie G; Krumina L; Tunlid A; Persson P
    Sci Rep; 2018 Jul; 8(1):10834. PubMed ID: 30018415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissolution of Fe from Fe-bearing minerals during the brown-carbonization processes in atmosphere.
    Wang Y; Ling J; Gu C; Zhou S; Jin X
    Sci Total Environ; 2021 Oct; 791():148133. PubMed ID: 34119791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Release of chromium from Cr(III)- and Ni(II)-substituted goethite in presence of organic acids: Role of pH in the formation of colloids and complexes.
    Sun S; Deng T; Ao M; Mo Y; Li J; Liu T; Yang W; Jin C; Qiu R; Tang Y
    Sci Total Environ; 2023 Dec; 904():166979. PubMed ID: 37699483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photochemical Aging of Guaiacol by Fe(III)-Oxalate Complexes in Atmospheric Aqueous Phase.
    Pang H; Zhang Q; Wang H; Cai D; Ma Y; Li L; Li K; Lu X; Chen H; Yang X; Chen J
    Environ Sci Technol; 2019 Jan; 53(1):127-136. PubMed ID: 30484312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative adsorption and local structures of gallium(III) at the water-alpha-FeOOH interface.
    Persson P; Zivkovic K; Sjöberg S
    Langmuir; 2006 Feb; 22(5):2096-104. PubMed ID: 16489794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic release from arsenopyrite oxidative dissolution in the presence of citrate under UV irradiation.
    Hong J; Liu L; Tan W; Qiu G
    Sci Total Environ; 2020 Jul; 726():138429. PubMed ID: 32305755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions.
    Olsson R; Giesler R; Loring JS; Persson P
    Langmuir; 2010 Dec; 26(24):18760-70. PubMed ID: 21087005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants.
    Hou X; Huang X; Jia F; Ai Z; Zhao J; Zhang L
    Environ Sci Technol; 2017 May; 51(9):5118-5126. PubMed ID: 28358480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate.
    Carrasco N; Kretzschmar R; Xu J; Kraemer SM
    Geochem Trans; 2009 Jun; 10():5. PubMed ID: 19523232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
    Arnold RG; DiChristina TJ; Hoffmann MR
    Biotechnol Bioeng; 1988 Oct; 32(9):1081-96. PubMed ID: 18587827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative degradation of phenol by sulfidated zero valent iron under aerobic conditions: The effect of oxalate and tripolyphosphate ligands.
    Kong X; Zhang C; Zhang J; Xuan L; Qin C
    J Environ Sci (China); 2021 Feb; 100():82-89. PubMed ID: 33279056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation.
    Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R
    Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of arsenate mobilization from goethite by aliphatic carboxylic acid.
    Shi R; Jia Y; Wang C; Yao S
    J Hazard Mater; 2009 Apr; 163(2-3):1129-33. PubMed ID: 18752889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines.
    Saucedo-Vázquez JP; Kroneck PM; Sosa-Torres ME
    Dalton Trans; 2015 Mar; 44(12):5510-9. PubMed ID: 25697977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater.
    Zhang D; Guo H; Xiu W; Ni P; Zheng H; Wei C
    J Hazard Mater; 2017 Jan; 321():228-237. PubMed ID: 27631685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.