These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28145706)

  • 61. FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism.
    Kuang L; Liu Y; Fu D; Zhao Y
    J Colloid Interface Sci; 2017 Mar; 490():259-269. PubMed ID: 27912125
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Redox-independent chromium isotope fractionation induced by ligand-promoted dissolution.
    Saad EM; Wang X; Planavsky NJ; Reinhard CT; Tang Y
    Nat Commun; 2017 Nov; 8(1):1590. PubMed ID: 29150598
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Roles of different types of oxalate surface complexes in dissolution process of ferrihydrite aggregates.
    Li F; Koopal L; Tan W
    Sci Rep; 2018 Feb; 8(1):2060. PubMed ID: 29391450
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dissolution of Al-Substituted Goethite in the Presence of Ferrichrome and Enterobactin at pH 6.5.
    Dubbin WE; Bullough F
    Aquat Geochem; 2017; 23(1):61-74. PubMed ID: 32355452
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Significantly Accelerated Hydroxyl Radical Generation by Fe(III)-Oxalate Photochemistry in Aerosol Droplets.
    Wang L; Li K; Liu Y; Gong K; Liu J; Ao J; Ge Q; Wang W; Ji M; Zhang L
    J Phys Chem A; 2023 Jan; 127(1):250-260. PubMed ID: 36595358
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Photo-oxidation of particle phase iron species dominates the generation of reactive oxygen species in secondary aerosol.
    Jiang SY; Gali NK; Ruan HD; Ning Z
    Sci Total Environ; 2020 Jun; 723():137994. PubMed ID: 32224395
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quantifying the Effect of Basic Minerals on Acid- and Ligand-Promoted Dissolution Kinetics of Iron in Simulated Dark Atmospheric Aging of Dust and Coal Fly Ash Particles.
    Al-Abadleh HA; Smith M; Ogilvie A; Sadiq NW
    J Phys Chem A; 2024 Sep; 128(38):8198-8208. PubMed ID: 39285699
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Atmospheric Processing and Iron Mobilization of Ilmenite: Iron-Containing Ternary Oxide in Mineral Dust Aerosol.
    Hettiarachchi E; Hurab O; Rubasinghege G
    J Phys Chem A; 2018 Feb; 122(5):1291-1302. PubMed ID: 29336571
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ultrafast Iron-Making Method: Carbon Combustion Synthesis from Carbon-Infiltrated Goethite Ore.
    Abe K; Kurniawan A; Ohashi K; Nomura T; Akiyama T
    ACS Omega; 2018 Jun; 3(6):6151-6157. PubMed ID: 31458798
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insight into the photochemistry of atmospheric oxalate through hourly measurements in the northern suburbs of Nanjing, China.
    Zhang C; Yang C; Liu X; Cao F; Zhang YL
    Sci Total Environ; 2020 Jun; 719():137416. PubMed ID: 32145492
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The mechanism for promoted oxygenation of V(IV) by goethite: Positive effect of surface hydroxyl groups.
    Hu X; Peng X; Kong L; Zhu F
    J Hazard Mater; 2019 May; 369():254-260. PubMed ID: 30780021
    [TBL] [Abstract][Full Text] [Related]  

  • 72. pH Transitions and electrochemical behavior during the synthesis of iron oxide nanoparticles with gas-diffusion electrodes.
    Burgos-Castillo RC; Garcia-Mendoza A; Alvarez-Gallego Y; Fransaer J; Sillanpää M; Dominguez-Benetton X
    Nanoscale Adv; 2020 May; 2(5):2052-2062. PubMed ID: 36132494
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of sulfate on biotite interfacial reactions under high temperature and high CO
    Zhang L; Zhu Y; Wu X; Jun YS
    Phys Chem Chem Phys; 2019 Mar; 21(12):6381-6390. PubMed ID: 30838369
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Photoreductive chlorine elimination from a Ni(iii)Cl
    Na H; Watson MB; Tang F; Rath NP; Mirica LM
    Chem Commun (Camb); 2021 Jul; 57(59):7264-7267. PubMed ID: 34195702
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms.
    Xu Z; Tsang DCW
    Eco Environ Health; 2024 Mar; 3(1):59-76. PubMed ID: 38318344
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Understanding the mechanisms of anisotropic dissolution in metal oxides by applying radiolysis simulations to liquid-phase TEM.
    Liu L; Sassi M; Zhang X; Nakouzi E; Kovarik L; Xue S; Jin B; Rosso KM; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2101243120. PubMed ID: 37252978
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The fate of inhaled uranium-containing particles upon clearance to gastrointestinal tract.
    Hettiarachchi E; Das M; Cadol D; Frey BA; Rubasinghege G
    Environ Sci Process Impacts; 2022 Aug; 24(8):1257-1266. PubMed ID: 35916312
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ligand-Promoted Photoreductive Dissolution of Goethite by Atmospheric Low-Molecular Dicarboxylates.
    Wang Z; Fu H; Zhang L; Song W; Chen J
    J Phys Chem A; 2017 Mar; 121(8):1647-1656. PubMed ID: 28145706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1864-70. PubMed ID: 19368184
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
    Kim K; Choi W; Hoffmann MR; Yoon HI; Park BK
    Environ Sci Technol; 2010 Jun; 44(11):4142-8. PubMed ID: 20446731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.