These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28146)

  • 1. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes.
    Siefring GE; Apostol AB; Velasco PT; Lorand L
    Biochemistry; 1978 Jun; 17(13):2598-604. PubMed ID: 28146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of gamma-glutamyl-epsilon-lysine bridges between membrane proteins by a Ca2+-regulated enzyme in intact erythrocytes.
    Lorand L; Siefring GE; Lowe-Krentz L
    J Supramol Struct; 1978; 9(3):427-40. PubMed ID: 34754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-modulated cross-linking of membrane proteins in intact erythrocytes.
    Siefring GE; Lorand L
    Prog Clin Biol Res; 1978; 20():25-36. PubMed ID: 26061
    [No Abstract]   [Full Text] [Related]  

  • 4. Crosslinking of the nearest membrane protein neighbors in ATP depleted, calcium enriched and irreversibly sickled red cells.
    Palek J; Liu SC; Liu PA
    Prog Clin Biol Res; 1978; 20():75-91. PubMed ID: 26062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immunochemical approach for the analysis of membrane protein alterations in Ca2+-loaded human erythrocytes.
    Bjerrum OJ; Hawkins M; Swanson P; Griffin M; Lorand L
    J Supramol Struct Cell Biochem; 1981; 16(3):289-301. PubMed ID: 7310899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins.
    Lorand L; Weissmann LB; Epel DL; Bruner-Lorand J
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4479-81. PubMed ID: 12508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane skeletal protein structure and interactions in human erythrocytes after their treatment with diamide and calcium.
    Kumar J; Gupta CM
    Indian J Biochem Biophys; 1992 Apr; 29(2):123-7. PubMed ID: 1398703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of protein cross-linking in Ca2+-enriched human erythrocytes and activated platelets.
    Lorand L; Barnes N; Bruner-Lorand JA; Hawkins M; Michalska M
    Biochemistry; 1987 Jan; 26(1):308-13. PubMed ID: 2881577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerisation of red cell membrane protein contributes to spheroechinocyte shape irreversibility.
    Palek J; Liu PA; Liu SC
    Nature; 1978 Aug; 274(5670):505-7. PubMed ID: 27725
    [No Abstract]   [Full Text] [Related]  

  • 10. Transglutaminase activity in human erythrocytes stored for transfusion: relationship to spectrin depletion in the microvesicles that form during the aging process in vitro [proceedings].
    Cole WF; Rumsby MG; Tovey LA
    Biochem Soc Trans; 1979 Oct; 7(5):943-5. PubMed ID: 41785
    [No Abstract]   [Full Text] [Related]  

  • 11. Residue Gln-30 of human erythrocyte anion transporter is a prime site for reaction with intrinsic transglutaminase.
    Murthy SN; Wilson J; Zhang Y; Lorand L
    J Biol Chem; 1994 Sep; 269(36):22907-11. PubMed ID: 7915720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of endogenous proteases on the spectrin binding proteins of human erythrocytes.
    Siegel DL; Goodman SR; Branton D
    Biochim Biophys Acta; 1980 Jun; 598(3):517-27. PubMed ID: 6770900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of transmembrane proteins in Ca2+-enriched human erythrocytes. An immunochemical study.
    Lorand L; Bjerrum OJ; Hawkins M; Lowe-Krentz L; Siefring GE
    J Biol Chem; 1983 Apr; 258(8):5300-5. PubMed ID: 6403545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid peroxidation.
    Flynn TP; Allen DW; Johnson GJ; White JG
    J Clin Invest; 1983 May; 71(5):1215-23. PubMed ID: 6853709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced transglutaminase-catalyzed cross-linking of exogenous amines to membrane proteins in sickle erythrocytes.
    Ballas SK; Mohandas N; Clark MR; Embury SH; Smith ED; Marton LJ; Shohet SB
    Biochim Biophys Acta; 1985 Jan; 812(1):234-42. PubMed ID: 2857092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane phosphorylation in intact human erythrocytes.
    Reimann B; Klatt D; Tsamaloukas AG; Maretzki D
    Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of protein polymers in erythrocyte ghosts incubated with sonicated lipid vesicles. Effects on spectrin extractibility, permeability of ghosts to vesicles, intramembrane particle distribution and bleb formation.
    Alloisio N; Giraud F; Boutalbi Y; Chailley B; Delaunay J
    Biochim Biophys Acta; 1983 Jan; 727(2):255-65. PubMed ID: 6838870
    [No Abstract]   [Full Text] [Related]  

  • 18. Lack of some Ca2+-mediated processes in goat erythrocytes.
    Khan MT; Saleemuddin M
    Biochim Biophys Acta; 1988 May; 940(1):165-9. PubMed ID: 3130104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phosphorylation of the major proteins of the human erythrocyte membrane.
    Waxman L
    Arch Biochem Biophys; 1979 Jul; 195(2):300-14. PubMed ID: 475393
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.