These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28146307)
1. Targeted Metabolomics of the Phenylpropanoid Pathway in Arabidopsis thaliana using Reversed Phase Liquid Chromatography Coupled with Tandem Mass Spectrometry. Jaini R; Wang P; Dudareva N; Chapple C; Morgan JA Phytochem Anal; 2017 Jul; 28(4):267-276. PubMed ID: 28146307 [TBL] [Abstract][Full Text] [Related]
2. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Vanholme R; Storme V; Vanholme B; Sundin L; Christensen JH; Goeminne G; Halpin C; Rohde A; Morreel K; Boerjan W Plant Cell; 2012 Sep; 24(9):3506-29. PubMed ID: 23012438 [TBL] [Abstract][Full Text] [Related]
3. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules]. Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive profiling of semi-polar phytochemicals in whole wheat grains (Triticum aestivum) using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Tais L; Schulz H; Böttcher C Metabolomics; 2021 Jan; 17(2):18. PubMed ID: 33502591 [TBL] [Abstract][Full Text] [Related]
5. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. König S; Feussner K; Kaever A; Landesfeind M; Thurow C; Karlovsky P; Gatz C; Polle A; Feussner I New Phytol; 2014 May; 202(3):823-837. PubMed ID: 24483326 [TBL] [Abstract][Full Text] [Related]
6. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Mir Derikvand M; Sierra JB; Ruel K; Pollet B; Do CT; Thévenin J; Buffard D; Jouanin L; Lapierre C Planta; 2008 Apr; 227(5):943-56. PubMed ID: 18046574 [TBL] [Abstract][Full Text] [Related]
7. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. Kim JI; Dolan WL; Anderson NA; Chapple C Plant Cell; 2015 May; 27(5):1529-46. PubMed ID: 25944103 [TBL] [Abstract][Full Text] [Related]
8. Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Nishiyama Y; Yun CS; Matsuda F; Sasaki T; Saito K; Tozawa Y Planta; 2010 Jun; 232(1):209-18. PubMed ID: 20396902 [TBL] [Abstract][Full Text] [Related]
9. Profiling of hydroxycinnamic acid amides in Arabidopsis thaliana pollen by tandem mass spectrometry. Handrick V; Vogt T; Frolov A Anal Bioanal Chem; 2010 Dec; 398(7-8):2789-801. PubMed ID: 20827470 [TBL] [Abstract][Full Text] [Related]
10. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. Ali MB; McNear DH BMC Plant Biol; 2014 Apr; 14():84. PubMed ID: 24690446 [TBL] [Abstract][Full Text] [Related]
11. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product "wood" and its comparison with leaf counterpart. Ammar S; Contreras MDM; Gargouri B; Segura-Carretero A; Bouaziz M Phytochem Anal; 2017 May; 28(3):217-229. PubMed ID: 28067965 [TBL] [Abstract][Full Text] [Related]
12. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Patten AM; Cardenas CL; Cochrane FC; Laskar DD; Bedgar DL; Davin LB; Lewis NG Phytochemistry; 2005 Sep; 66(17):2092-107. PubMed ID: 16153410 [TBL] [Abstract][Full Text] [Related]
13. Vessel-Specific Reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in Dwarfed De Meester B; de Vries L; Özparpucu M; Gierlinger N; Corneillie S; Pallidis A; Goeminne G; Morreel K; De Bruyne M; De Rycke R; Vanholme R; Boerjan W Plant Physiol; 2018 Jan; 176(1):611-633. PubMed ID: 29158331 [TBL] [Abstract][Full Text] [Related]
14. Loss of FERULATE 5-HYDROXYLASE Leads to Mediator-Dependent Inhibition of Soluble Phenylpropanoid Biosynthesis in Arabidopsis. Anderson NA; Bonawitz ND; Nyffeler K; Chapple C Plant Physiol; 2015 Nov; 169(3):1557-67. PubMed ID: 26048881 [TBL] [Abstract][Full Text] [Related]
15. Profiling hydroxycinnamoyl-coenzyme A thioesters: unlocking the back door of phenylpropanoid metabolism. Qualley AV; Cooper BR; Dudareva N Anal Biochem; 2012 Jan; 420(2):182-4. PubMed ID: 21982733 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Ma QH J Exp Bot; 2007; 58(8):2011-21. PubMed ID: 17452751 [TBL] [Abstract][Full Text] [Related]
17. Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Lanot A; Hodge D; Lim EK; Vaistij FE; Bowles DJ Planta; 2008 Sep; 228(4):609-16. PubMed ID: 18563437 [TBL] [Abstract][Full Text] [Related]
18. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. Thévenin J; Pollet B; Letarnec B; Saulnier L; Gissot L; Maia-Grondard A; Lapierre C; Jouanin L Mol Plant; 2011 Jan; 4(1):70-82. PubMed ID: 20829305 [TBL] [Abstract][Full Text] [Related]
19. The phenylpropanoid pathway in Arabidopsis. Fraser CM; Chapple C Arabidopsis Book; 2011; 9():e0152. PubMed ID: 22303276 [TBL] [Abstract][Full Text] [Related]