These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 28147566)
1. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation. Chen W; Fang J; Pang G; Holm S J Acoust Soc Am; 2017 Jan; 141(1):244. PubMed ID: 28147566 [TBL] [Abstract][Full Text] [Related]
2. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. Chen W; Holm S J Acoust Soc Am; 2004 Apr; 115(4):1424-30. PubMed ID: 15101619 [TBL] [Abstract][Full Text] [Related]
3. Effective fractional acoustic wave equations in one-dimensional random multiscale media. Garnier J; Solna K J Acoust Soc Am; 2010 Jan; 127(1):62-72. PubMed ID: 20058951 [TBL] [Abstract][Full Text] [Related]
4. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography. Holm S; Näsholm SP Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745 [TBL] [Abstract][Full Text] [Related]
5. Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. Wismer MG J Acoust Soc Am; 2006 Dec; 120(6):3493-502. PubMed ID: 17225379 [TBL] [Abstract][Full Text] [Related]
6. Frequency-domain wave equation and its time-domain solutions in attenuating media. Sushilov NV; Cobbold RS J Acoust Soc Am; 2004 Apr; 115(4):1431-6. PubMed ID: 15101620 [TBL] [Abstract][Full Text] [Related]
7. Estimation of shear modulus in media with power law characteristics. Zhang W; Holm S Ultrasonics; 2016 Jan; 64():170-6. PubMed ID: 26385841 [TBL] [Abstract][Full Text] [Related]
8. A unifying fractional wave equation for compressional and shear waves. Holm S; Sinkus R J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators. Maestas JT; Collis JM J Acoust Soc Am; 2016 Mar; 139(3):1420-9. PubMed ID: 27036279 [TBL] [Abstract][Full Text] [Related]
10. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. Treeby BE; Cox BT J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722 [TBL] [Abstract][Full Text] [Related]
11. Far-field scattering model for wave propagation in random media. Rokhlin SI; Li J; Sha G J Acoust Soc Am; 2015 May; 137(5):2655-69. PubMed ID: 25994697 [TBL] [Abstract][Full Text] [Related]
12. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN. Jiang H; Liu F; Meerschaert MM; McGough RJ Electron J Math Anal Appl; 2013 Jan; 1(1):55-66. PubMed ID: 26425384 [TBL] [Abstract][Full Text] [Related]
13. A causal and fractional all-frequency wave equation for lossy media. Holm S; Näsholm SP J Acoust Soc Am; 2011 Oct; 130(4):2195-202. PubMed ID: 21973374 [TBL] [Abstract][Full Text] [Related]
14. Time-domain analysis of power law attenuation in space-fractional wave equations. Zhao X; McGough RJ J Acoust Soc Am; 2018 Jul; 144(1):467. PubMed ID: 30075676 [TBL] [Abstract][Full Text] [Related]
15. Acoustic precursor wave propagation in viscoelastic media. Zhu GK; Mojahedi M; Sarris CD IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):505-14. PubMed ID: 24569254 [TBL] [Abstract][Full Text] [Related]
17. Modified Szabo's wave equation models for lossy media obeying frequency power law. Chen W; Holm S J Acoust Soc Am; 2003 Nov; 114(5):2570-4. PubMed ID: 14649993 [TBL] [Abstract][Full Text] [Related]
18. Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media. Norton GV; Novarini JC J Acoust Soc Am; 2003 Jun; 113(6):3024-31. PubMed ID: 12822773 [TBL] [Abstract][Full Text] [Related]
19. The fractal derivative wave equation: Application to clinical amplitude/velocity reconstruction imaging. Cai W; Chen W; Xu W J Acoust Soc Am; 2018 Mar; 143(3):1559. PubMed ID: 29604705 [TBL] [Abstract][Full Text] [Related]