These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28147650)

  • 1. Dew point fast measurement in organic vapor mixtures using quartz resonant sensor.
    Nie J; Liu J; Meng X
    Rev Sci Instrum; 2017 Jan; 88(1):015005. PubMed ID: 28147650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quartz Crystal Microbalance dew point sensor without frequency measurement.
    Wang G; Zhang W; Wang S; Sun J
    Rev Sci Instrum; 2014 Nov; 85(11):115002. PubMed ID: 25430139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance.
    Li N; Meng X; Nie J
    Rev Sci Instrum; 2017 May; 88(5):056103. PubMed ID: 28571406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dew Point Calibration System Using a Quartz Crystal Sensor with a Differential Frequency Method.
    Lin N; Meng X; Nie J
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27869746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance.
    Nakamoto T; Kobayashi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):806-11. PubMed ID: 18263270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new optical fiber dew point humidity sensor based on the virtual instrument.
    Tan C; Huang X; Lei H; Zhang L; Chen J; Meng H
    Rev Sci Instrum; 2019 Jan; 90(1):015115. PubMed ID: 30709163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Dew/Frost Point Temperature Sensor Based on Tunable Diode Laser Absorption Spectroscopy and Its Application in a Cryogenic Wind Tunnel.
    Nie W; Xu Z; Kan R; Ruan J; Yao L; Wang B; He Y
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dew Point Measurement Using a Carbon-Based Capacitive Sensor with Active Temperature Control.
    Nie J; Wu Y; Huang Q; Joshi N; Li N; Meng X; Zheng S; Zhang M; Mi B; Lin L
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1699-1705. PubMed ID: 30563323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.
    Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK
    Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-scan measurement of conductance of a quartz crystal microbalance array coupled with resonant markers for biosensing in liquid phase.
    Hsiao HY; Chen RL; Cheng TJ
    Rev Sci Instrum; 2009 Apr; 80(4):044301. PubMed ID: 19405677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for locating the vapor-liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor.
    Ke J; King PJ; George MW; Poliakoff M
    Anal Chem; 2005 Jan; 77(1):85-92. PubMed ID: 15623282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Note: Temperature-frequency calibration method based on spectral analysis for QCR dew point sensor.
    Liu J; Nie J; Meng X
    Rev Sci Instrum; 2018 Jun; 89(6):066107. PubMed ID: 29960542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Dew-Condensation Sensor Exploiting Local Variations in the Relative Refractive Index on the Dew-Friendly Surface of a Waveguide.
    Hwa S; Sim ES; Na JH; Jang IH; Kwon JH; Kim MH
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer.
    Ebarvia BS; Ubando IE; Sevilla FB
    Talanta; 2015 Nov; 144():1260-5. PubMed ID: 26452956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic liquids: a new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance.
    Liang C; Yuan CY; Warmack RJ; Barnes CE; Dai S
    Anal Chem; 2002 May; 74(9):2172-6. PubMed ID: 12033323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Enhancement of Interdigital Electrode-Piezoelectric Quartz Crystal (IDE-PQC) Salt Concentration Sensor by Increasing the Electrode Area of Piezoelectric Quartz Crystal (PQC).
    Zhang H; Yao Y; Shi Y
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel quartz crystal microbalance gas sensor based on porous film coatings. A high sensitivity porous poly(methylmethacrylate) water vapor sensor.
    Yoo HY; Bruckenstein S
    Anal Chim Acta; 2013 Jun; 785():98-103. PubMed ID: 23764449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quartz crystal microbalance technique for analysis of cooling crystallization.
    Liu LS; Kim J; Chang SM; Choi GJ; Kim WS
    Anal Chem; 2013 May; 85(9):4790-6. PubMed ID: 23550591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive resonant sensor using quartz resonator cluster for inclination measurement.
    Chen F; Tian W; Wei Y
    Rev Sci Instrum; 2020 May; 91(5):055005. PubMed ID: 32486722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.