These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28147671)

  • 21. A steady-state high-temperature method for measuring thermal conductivity of refractory materials.
    Manzolaro M; Corradetti S; Andrighetto A; Ferrari L
    Rev Sci Instrum; 2013 May; 84(5):054902. PubMed ID: 23742578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures.
    Perkins RA; Ramires ML; Nieto de Castro CA
    J Res Natl Inst Stand Technol; 2000; 105(2):255-64. PubMed ID: 27551608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3
    Qiu L; Ouyang Y; Feng Y; Zhang X
    Rev Sci Instrum; 2018 Sep; 89(9):096112. PubMed ID: 30278753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous measurement of thermal conductivity and thermal diffusivity of individual microwires by using a cross-wire geometry.
    Chen H; Sun H; Chen L; Chen Y; Chen J; Qiu X; Wang J
    Rev Sci Instrum; 2022 Feb; 93(2):024901. PubMed ID: 35232137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3ω-Völklein method.
    Ftouni H; Tainoff D; Richard J; Lulla K; Guidi J; Collin E; Bourgeois O
    Rev Sci Instrum; 2013 Sep; 84(9):094902. PubMed ID: 24089850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LEGO® Block Structures as a Sub-Kelvin Thermal Insulator.
    Chawner JMA; Jones AT; Noble MT; Pickett GR; Tsepelin V; Zmeev DE
    Sci Rep; 2019 Dec; 9(1):19642. PubMed ID: 31873080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal conductivity of the porcine heart tissue.
    Končan D; Rifel J; Drevenšek G; Kocijančič S; Ogorelec S; Budihna MV
    Pflugers Arch; 2000 Jan; 440(Suppl 1):R143-R144. PubMed ID: 28008515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.
    Burg BR; Kolly M; Blasakis N; Gschwend D; Zürcher J; Brunschwiler T
    Rev Sci Instrum; 2015 Dec; 86(12):124903. PubMed ID: 26724058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor.
    Mishra V; Hardin CL; Garay JE; Dames C
    Rev Sci Instrum; 2015 May; 86(5):054902. PubMed ID: 26026546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient.
    Amatya R; Mayer PM; Ram RJ
    Rev Sci Instrum; 2012 Jul; 83(7):075117. PubMed ID: 22852734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature.
    Schwyter ES; Helbling T; Glatz W; Hierold C
    Rev Sci Instrum; 2012 Jul; 83(7):074904. PubMed ID: 22852715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device.
    Weathers A; Bi K; Pettes MT; Shi L
    Rev Sci Instrum; 2013 Aug; 84(8):084903. PubMed ID: 24007092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.
    Chien HC; Yao DJ; Huang MJ; Chang TY
    Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring thermal conductivity via three-dimensional porous alumina.
    Abad B; Maiz J; Ruiz-Clavijo A; Caballero-Calero O; Martin-Gonzalez M
    Sci Rep; 2016 Dec; 6():38595. PubMed ID: 27934930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the van der Pauw's method applied to the measurement of low thermal conductivity materials.
    Morales C; Flores E; Bodega J; Leardini F; Ferrer IJ; Ares JR; Sánchez C
    Rev Sci Instrum; 2016 Aug; 87(8):084902. PubMed ID: 27587145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large Thermal Conductivity Differences between the Crystalline and Vitrified States of DMSO with Applications to Cryopreservation.
    Ehrlich LE; Feig JS; Schiffres SN; Malen JA; Rabin Y
    PLoS One; 2015; 10(5):e0125862. PubMed ID: 25985058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors.
    Wan X; Li C; Yue Y; Xie D; Xue M; Hu N
    Nanotechnology; 2016 Nov; 27(44):445706. PubMed ID: 27671086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.